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In modern computer graphics applications, textures play an important role in conveying the
appearance of real-world materials. But while surface appe arance can often be e�ectively captured
with a photograph, it is di�cult to use example imagery to syn thesize fully three-dimensional
solid textures that are perceptually similar to their input s. Speci�cally, this research focuses
on human perception of 3D solid textures composed of aggrega te particles in a binding matrix.
Holding constant an established algorithm for approximati ng particle distributions , we examine
the problem of estimating particle shape. We consider four methods for approximating plausible
particle shapes|including two methods of our own contribut ion. We compare the performance
of these methods under a variety of input conditions using au tomated, perceptually-motivated
metrics as well as a psychophysical experiment. In the cours e of assessing the relative performance
of the four algorithms, we also evaluate the reliability of t he automated metrics in predicting the
results of the experiment.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—
Geometric algorithms, languages, and systems; H.1.2 [Models and Principles]: User/Machine Systems—Human
factors

General Terms: Algorithms, Human Factors
Additional Key Words and Phrases: shape estimation, shape p erception, texture synthesis, solid
textures, volumetric textures

1. INTRODUCTION

One of the most common objectives in computer graphics is to replicate the appearance of
real-world objects in a simulated digital environment. In practice, this frequently involves
the use oftexture maps—images that are mapped to the surface of synthetic objects to
convey the appearance of spatial variation within a material. For many objects, 2D images
are suf�cient; however, for objects formed from materials with inherent 3D structure, it can
be dif�cult to �nd a 2D image mapping that adequately represents the material variation.
As an alternative to 2D image maps, the use of 3D solid textures has proven successful for
modeling materials with internal 3D structure [Gardner 1984; Peachey 1985; Perlin 1985].
Three dimensional solid textures are volumes that contain amaterial description at each
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2 � R. Jagnow et al.

Fig. 1. Frequently a 3D solid texture can only be sampled as a 2D image, such as shown in (a). To synthesize
objects made of this material a 3D structure, such as shown in(b), needs to be generated. There is no unique
solution for the 3D structure associated with a 2D image.

point in space.
In this work, we consider the class of aggregate materials composed of discrete particles

in a binding matrix. A distinguishing feature of objects made of such materials is that the
shapes of the cross sections of the discrete particles are clearly visible. Common examples
of such materials include concrete, asphalt, terrazzo and granite. For these material types,
an explicit volumetric representation can convey a compelling material appearance. For
instance, Figure 1 shows a 2D image of material (a) that was used to extrapolate a plausible
3D structure (b). In this case, we generated the resulting object by splitting the material
along its aggregate boundaries, thus exposing the internalstructure. The general problem
of reconstructing a 3D volume from a 2D image is heavily unconstrained with no unique
solution. Furthermore, the solution cannot be compared point-by-point to some ground
truth, so we must instead use appearance as a mechanism to assess the effectiveness of
various computational methods.

In prior research, we studied forming 3D structures when theparticle shapes are known
a priori. For this case, we can use a mathematical relationship from stereology for recov-
ering a unique 3D particledistribution given only a 2D image of a planar sample of the
material [Jagnow et al. 2004]. In the original 2D image we compute the distribution of
cross sectional areas. Using the mathematical relationship between 2D and 3D distribu-
tions and the known particle shape, we can generate a 3D volume of particles. New 2D
images can be generated from this 3D volume. We were able to demonstrate that new 2D
slices through this volume produced the same distribution of cross sectional areas as the
original sample image.

In this paper, we instead focus on approximating plausibleshapesfor individual parti-
cles, a problem that does not have unique mathematical solution. The dif�culty in esti-

ACM Transactions on Applied Perception, Vol. V, No. N, Month20YY.



Evaluation of Methods for Approximating Shapes � 3

Fig. 2. The dif�culty of estimating 3D shape from 2D images ofslices depends on how much is known about the
sampling process. The examples at top and bottom show a perspective view (left), top view (center), and section
view (right) of planes slicing shapes. In the example at the top, the location and orientation of slices through a
simple shape are known, generating pro�les on the right thatare relatively easy to link together to estimate 3D
shape. In the example at the bottom, a single slice is obtained through many instances of the shape. Since the
orientation and position of the shapes relative to the sliceplane are unknown, it is not as clear how to connect the
resulting 2D pro�les to estimate the shape.

mating a plausible shape from 2D images obtained from blocksof material is illustrated in
Figure 2. The top of Figure 2 shows a simpler problem of estimating the shape of a particle
by taking multiple slices. If the spacing and orientation ofthe slices are controlled, the se-
quence of circular pro�les shown at the right would be obtained. With known slice planes,
the points on all of the pro�les can be located in a single 3D coordinate system as a “point
cloud”. By simply stitching together the pro�les we could estimate particle shape. More
sophisticated algorithms for interpolating point clouds exist with geometric guarantees for
the quality of the approximation of the original shape [Amenta et al. 2001].

The bottom of Figure 2 shows the more complicated problem of estimating the shape of
particles in an aggregate material. We obtain a single slice, rather than a series of slices.
The single slice passes through many instances of the particle, and so produces many
pro�les in the single image. The particles are arbitrarily oriented and positioned relative to
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the slice plane, so we cannot easily stitch them together to make a shape estimate in this
case. Analogous to the distribution problem, we would like to �nd a relationship between
the 2D shape of these pro�les and the 3D shape. Unlike the distribution problem, there is
no unique mathematical relationship that we can use. Also analogous to the distribution
problem, we would like to be able to demonstrate that the shapes of the cross sections
produced from the estimated 3D shape are the same as the shapes in the original sample.
Unlike the distribution problem, there is no simple metric that we can rely on to measure
if the 2D shapes are the same.

In this paper we consider different algorithms for estimating the 3D particle shape from
a 2D sample. In the absence of an established metric for comparing the similarity of the
2D cross sections derived from our 3D estimates to the 2D cross sections in the original
sample, we evaluate our results from a psychophysical standpoint with perceptual exper-
iments. Our objectives in this research are twofold. Our �rst and primary goal is to use
direct observer evaluations to determine which algorithmsare most effective for generat-
ing 3D particle shapes that exhibit 2D pro�les with a comparable appearance to the input
data. Our second objective is to assess how reliably simple numerical metrics serve as
predictors of the psychophysical evaluation. If simple metrics can be found to predict the
psychophysical evaluation, they could be used in further algorithm development in place
of observer evaluations.

While the speci�c contribution of this work is the description and evaluation of a partic-
ular method for texture synthesis, at a more general level our contribution is the description
of a problem in computer graphics that canonly be addressed with perceptual principles
and experiments. Unlike much recent work in applying perceptual principles to computer
graphics rendering and modeling, we are not seeking an approximation to an image, model
or animation that is perceived as identical to gold standard. For example, in modeling a
shape, there are metrics from outside of psychophysics (mininum distance between sur-
faces) that can be used to assess how close an approximation of the shape is to a gold
standard exact shape. It is possible to show that one shape approximation is more accurate
than another using purely numerical metrics without psychophysics. Observer experiments
are performed to relate the numerical metrics to their perceptual importance and re�ne the
use of numerical metrics [Watson et al. 2001]. In another example, simulating visible light
transfer, there are numerical metrics (difference in radiance estimated for a pixel) that can
be used to assess how close an approximation of a lighting solution is to a gold standard
exact solution. It is possible to show that one method for computing light transfer is better
than another by showing that the radiances calculated are closer to the gold standard. Ob-
server experiments are performed to relate numerical accuracy of radiance to its perceptual
importance and re�ne the requirements for accuracy of lighttransfer for image synthesis
[Martens and Myszkowski 1998]. In the case of generating solid textures we are not at-
tempting to approximate pixel by pixel identical images or identical shapes. We do not
have an accepted numerical metric outside of psychophysicsthat can guide algorithms and
allow us to determine that method A is better than method B. For solid texture synthesis we
need psychophysical experiments and metrics both to evaluate algorithms and to establish
numerical metrics that can be used in future algorithm development. In general, computer
graphics algorithms for simulating the appearance of materials fall into this class.

There has been considerable work recently on texture synthesis for computer graphics
[Turk 2001; Wei 2003; Ghazanfarpour and Dischler 1996; Dischler and Ghazanfarpour
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1999; Wei and Levoy 2001; Zhang et al. 2003; Lefebvre and Poulin 2000]. Despite the
fact that these computer graphics techniques do not producetextures that are identical to
previous texture synthesis techniques, they have not been tested with psychophysical met-
rics or experiments. Texture synthesis techniques in computer graphics are evaluated with
respect to computational ef�ciency and casual visual inspection. While texture similarity
has been studied in great depth in the vision literature, texture synthesis applied to 3D ob-
jects for the generation of realistic images has not. A greatdeal of work in understanding
perception of textures in the vision literature has concentrated on understanding textures in
the abstract without context in order to understand basic visual mechanisms. The graphics
texture synthesis problem differs in that whether texturesare successful depends on con-
text. If an image of fur is used as an example input, the texture generated should look like
fur, and should look like natural fur when applied to a 3D model of a dog or cat. More
relevant to the work presented here, if an image of an aggregate material is used as exam-
ple input, the texture generated should look like an aggregate. An object should look like
it was shaped from the solid when the texture is applied, rather than looking like it was
papered over with prints of an aggregate texture. To achievethese results, texture synthesis
techniques in computer graphics often model physical processes, such as cutting through
a three dimensional solid, rather than relying on purely arti�cial processes such as adding
and modifying signals of varying spatial frequency. The work presented here is a small
step in the perceptual evaluation of texture synthesis as part of the simulation of material
appearance for realistic 3D modeling.

Our primary goal in this paper is evaluating methods for estimating the 3D shapes of
particles used in solid texture synthesis. In our experiments we are interested in �nding
methods that are clearly superior or inferior. As a consequence, we have different require-
ments in our experimental methods as compared to prior work investigating fundamentals
of human vision. For methods that clearly fail, we do not needto �nd precisely how poorly
they perform by conducting extensive experiments. Furthermore, we can only test a �nite
number of cases for a type of input data for which there is no de�nitive test set that covers
all possible problems. In the end our results indicate trends, not precise measures of the
quality of output for each algorithm for any possible input.

In the next section we review relevant previous work in texture mapping, texture syn-
thesis, shape estimation and shape evaluation. We follow this with a description of four
candidate methods for estimating particle shapes from their 2D pro�les—spherical har-
monics, constructive solid geometry, generalized cylinders and morphed cylinders. Next
we describe the evaluation of the results of these methods using simple numerical metrics
(total curvature and area to perimeter squared ratio) and bya study with human observers.
We found that the simple numerical metrics were not successful in predicting the results
of the observer study. In the observer study we found that twoof the methods, spherical
harmonics and constructive solid geometry, always produced shapes that were easily dis-
tinguishable from shapes produced from a synthetic ground truth model for some classes
of particles. The other two methods were not signi�cantly different from each other in
their success when the results of all particle classes were combined. The morphed cylinder
method produced the greatest percentage of successful results when the �oor of average
results minus standard deviation is considered for each class of particle separately. We
found that even the morphed cylinder method however did not produce results comparable
to sampling the original synthetic ground truth volume, indicating that there is room for
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Fig. 3. In 2D texture mapping an image is assigned to a 3D object (a). The mapping is performed by establishing
correspondences between locations on the 2D image and the 3Dobject. Many possible correspondences are
possible, giving signi�cantly different results (b).

improvement in the shape estimation problem.

2. PREVIOUS WORK

This research builds on a variety of related work in the areasof computer graphics, com-
puter vision, andstereology—the study of three dimensional structure from two dimen-
sional samples developed in the �elds of biology and material science [Hagwood 1990;
Underwood 1970]. The most relevant research is described below.

2.1 2D versus 3D Texture Mapping

Texture mapping is used to add spatial variation to the appearance of a surface. The vari-
ation may be solely in color, but can also include variationsin re�ectance (e.g. diffuse
versus specular.) In Figure 3 we illustrate the 2D texture mapping process. Figure 3(a)
shows an image of a sample pattern of brown squares on a white background, and a sample
3D object, a small dog. As shown in(a), the image is mapped to the surface by identifying
corresponding points in the 2D image and on the 3D object. Many possible correspondence
schemes are possible and(b) shows some possible results for mapping this 2D image on
the dog. The results in(b) would be consistent with stretching some thin material overthe
surface of the dog.

A 3D solid texture map is a numerically de�ned volume in whichevery point in space
has a material value de�ned either by interpolating betweendiscrete values de�ned at lat-
tice points, by a function of 3D position, or by packing sets of small geometric primitives
into the volume (as illustrated in Figure 4). An extensive discussion of de�ning and repre-
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Fig. 4. In 3D solid texture mapping a 3D structure is de�ned, (a), as a set of brown cubes encased in a white
binder (binder not shown for clarity). The object is immersed in the structure, and texture is assigned in (b) by
intersecting the object with the structure.

senting 3D solid textures can be found in [Ebert et al. 1994].
In Figure 4 we illustrate the 3D solid texturing process. Thebrown and white image

shown in Figure 3 could be interpreted as a slice of a materialcomposed of an array of
brown cubes embedded in a white binding material. In Figure 4(a), we show the dog model
embedded in the array of brown cubes with the white binding material hidden to expose
the internal structure. The surface of the dog then is colored by �nding the intersections of
the dog with the array of cubes to produce(b). Finding a 2D mapping that would produce
the same result would be extremely dif�cult without an intermediate 3D representation.

In addition to properly applying the 2D image to curved shapes to avoid obvious dis-
tortions, a further problem with using 2D images to texture map even simple 3D objects
is consistency, as illustrated in Figure 5. The cube at the left is mapped with 2D images
of an aggregate, and the cube at the right is mapped with 2D images of wood grain. Due
to inconsistencies at the texture boundaries, the cubes appear to be wall papered with the
images rather than being carved out of solid materials. If the left cube were composed of
a 3D aggregate we would expect the images of particles at cubeedges to be continued on
adjoining faces. If the right cube were composed of wood, we would expect the images to
demonstrate a consistent grain orientation.

Both 2D and 3D texture mapping are standard features in current modeling/rendering
systems. To use these techniques though, the textures must be synthesized in some way to
completely cover the object being designed.

2.2 Texture Synthesis

In a computer graphics modeling system, both 2D and 3D solid textures can be created by
purely synthetic means. A user can specify functional parameters to procedurally gener-
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Fig. 5. Problems of texture continuity are often apparent atgeometric seams when using 2D textures. These
boxes appear as though they are wallpapered as opposed to being cut out of solid materials.

ate texture of arbitrary spatial extent. Alternatively, textures can be synthesized from 2D
photographs of real materials. For 2D textures, the major problem is generating textures
of arbitrary size from example images. Substantial research over the past ten years has
resulted in numerous 2D texture synthesis algorithms to address this problem. Most of
these algorithms fall into the categories either of methodsthat work by matching image
statistics, e.g. [Heeger and Bergen 1995; De Bonet 1997] or by copying pixels or patches
selected by probability sampling the example image, e.g. [Efros and Leung 1999; Efros
and Freeman 2001]. Two-dimensional texture synthesis algorithms have been extended to
apply them to the surfaces of geometric models [Turk 2001; Gorla et al. 2001] and to apply
synthesis to 2D maps representing bidirectional textures [Tong et al. 2002]. These are only
a few examples of recently developed techniques. A comprehensive review of 2D texture
synthesis algorithms is outside the scope of this paper. We note however that no perceptual
evaluation of the large number of methods for synthesizing 2D textures on three dimen-
sional shapes has been performed. The closest work is that ofKim et al. [2004] studying
the effect of texture on the perception of shape. That work does not consider how well a
synthesized texture on a 3D surface conveys the appearance of a corresponding 2D input.

Methods for 2D texture synthesis can readily be applied to 3Dvolumes if data for 3D
structure are available for the material to be modeled. However, unlike 2D image samples,
which can be captured with any camera, sample 3D solid texture images must be obtained
by imaging closely spaced slices through a real-world object or by reconstructed 3D vol-
umes from measurements of x-ray transmissions. Such 3D samples are not available for
common materials to be used in computer graphics modeling systems. Instead, synthesis
techniques need to be devised which use only a 2D image of the 3D solid texture.

One common class of natural and man-made materials consistsof discrete particles dis-
tributed in a binding medium, such as concrete, terrazzo, asphalt, or granite. An example
image of one such material is shown in Figure 1(a). A single 2D slice through an aggre-
gate material can hint at the embedded particle shapes and their distribution, but the exact
structure is unknown unless additional information is availablea priori. For example, for
the image used in Figure 3, the corresponding structure could have been long brown sticks
rather than cubes, brown �akes, or some completely unrelated structure covered by a ve-
neer.
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In comparing the simple array of cubes in Figure 4 to the real aggregate imaged in
Figure 1, we can observe that we need to estimate four things to synthesize a particular 3D
structure:

(1) The individual particle shapes

(2) The spatial distribution of particles

(3) The size distribution of particles

(4) The color variations of particles and binder

In prior work [Jagnow et al. 2004], we considered estimating(2)-(4) given a 2D slice of
the material and estimates of the particle shapes. For a given particle shape, the statistics
of the distribution of particles in a 2D slice are determinedby the 3D particle distribution.
This relationship is mathematically invertible using techniques from stereology so that the
statistics of the 3D distribution can be computed from the analysis of the 2D slices. We
demonstrated that after particle size distributions are estimated, the particles can be spa-
tially distributed using simulated annealing, and previous 2D texture synthesis algorithms
can be adapted to produce color variations.

In this prior work, particle shapes were estimated by hand—atedious and error-prone
process. To have a completely automatic method we need a reliable means to estimate
the 3D particle shapes from the 2D slices observed in the sample images. Unlike the size
distribution problem, there is not a mathematically uniquesolution for computing the 3D
shape from the 2D slices.

2.3 Particle Shape Estimation

The challenge of reconstructing 3D shape from 2D images is a common problem within
both the graphics and computer vision communities. A numberof specialized solutions
have been presented, each targeted to particular data constraints. Many methods rely on
2D images of the 3D shape captured by a camera, rather than on scanning 2D slices taken
through the shape. In the case where camera locations are known, Martin and Aggarwal
developed a computational method for approximating the bounding volume of an object
by intersecting extruded silhouettes of the object as seen from various viewpoints [1983].
The resulting shape is known as the visual hull. Matusik et al. adapted this approach to
operate on dynamic scenes [2000]. In contrast, for our data,we typically don't have the
convenience of a known correspondence between individual 2D pro�les.

When only a single pro�le is available, Igarashi et al. constrain the reconstruction prob-
lem by assuming that the 3D shape exhibits a circular pro�le along its chordal axis [1999].
However, this approach is suitable only for producing smooth, rounded surfaces.

Within the computer vision community, the generalized coneand generalized cylinder
have long been recognized as effective primitives for shaperepresentation due to their
ability to express a wide variety of shapes with few parameters [Binford 1971; Marr and
Nishihara 1978]. In the graphics community, Dischler and Ghazanfarpour [1999] used
generalized cylinders to model discrete particle shapes embedded in macrostructured tex-
tures. However, the resulting shapes tend to exhibit unnatural symmetry that is often not
present in the input data.

Particle shape estimation is also of great interest in the stereological community. In
histology—the study of microscopic structures of plants or animals—the analysis of par-
ticle distribution and shape can be used to determine the presence of cancerous or pre-
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cancerous cells [Keiding and Jensen 1972]. The spherical deformation model is one of
the most commonly used methods within the stereological community for estimating 3D
shapes [Hobolth and Jensen 2002; Hobolth 2003]. However, this approach is often unsuit-
able for representing particles with sharp corners or distinct features.

Solid texture synthesis for aggregate materials was considered from a stereological per-
spective in our previous work [Jagnow et al. 2004]. In this prior work, particle shapes were
approximated by manually editing nonuniform rational B-spline (NURBS) surfaces. We
seek to accelerate this process by applying automated methods for extrapolating particle
shapes.

2.4 2D Shape Perception

For the majority of the existing literature in shape approximation, the objective is to build
an accurate geometric reconstruction of an existing 3D object. In contrast, for a single input
image with discrete, uncorrelated pro�les, there is insuf�cient information for extrapolat-
ing an accurate 3D model—the problem is, by nature, heavily unconstrained. We cannot
expect to reconstruct the identical 3D shapes that were present in the original material.
A more appropriate objective is to approximate a particle shape that exhibits perceptu-
ally similar pro�les to those seen in the input. To evaluate our methods, we need some
way of quantifying the perceptual similarity of the resultsof various shape approximation
algorithms.

To compare the similarity of pro�les, a wide variety of metrics are available. For
an extensive overview of such techniques, we refer the reader to the summary by Lon-
caric [1998]. Unfortunately, few existing 2D shape comparisons metrics are perceptually
motivated. In an attempt to establish a relationship between computational shape similar-
ity and human shape similarity, Scassellati et al. considerthe use of algebraic moments,
spline curve distances, cumulative turning angle, sign of curvature, and Hausdorff-distance,
all with limited success [1994]. The shape metrics that we consider here are motivated
by prior research that has identi�ed curvature as an important characteristic discerned by
low-level human perceptual mechanisms [Dobbins et al. 1987; Or and Zucker 1989; Ben-
Shahar et al. 2003]. Speci�cally, we compare pro�les using metrics of total curvature
magnitude [Gardner et al. 2004; Loncaric 1998] and area per square perimeter [Li et al.
2003], which is sometimes referred to ascircularity due to the fact that the metric yields a
maximal value for circular shapes.

Simple metrics cannot be expected to reliably capture all psychophysical aspects of pro-
�le similarity, so direct human evaluation also plays an essential role in shape compar-
ison. A number of authors have used direct psychophysical evaluation to assess visual
�delity [Meyer et al. 1986; Rushmeier et al. 2000; Pellaciniet al. 2000; McNamara et al.
2000]. Of particular interest in this area is work by Watson et al., who rate the performance
of automated metrics for predicting experimental results [2000; 2001]. The perceptual ex-
periments described in their research measurenaming time—the elapsed time from when
an object is shown to a subject until it is named. However, this metric is inappropriate for
gauging the similarity of abstract shapes.

Martens and Myszkowski presented technique for evaluatingthe performance of perceptually-
motivated appearance metrics [1998]. In their psychophysical experiments, users were
asked to numerically rank the visual similarity of image pairs. Unlike this previous work
however, the images we create from estimated 3D solid textures are not expected to be
identical. We cannot use image visible difference predictors such as the model validated
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Constructive Morphed
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Spherical
Solid
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GeneralizedHarmonics
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Cylinder
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Number of

input pro�les
1 or more 3 2 3 or more

Treatment of frequency orthogonal orthogonal orthogonal
input pro�les data only silhouettes slices slices

Fig. 6. Summary of input parameters and data assumptions forshape approximation methods

by Martens and Myszkowski.
Recently, Ledda et al. [2005] evaluated the performance of tone-mapping operators rel-

ative to viewing a high dynamic range image. This is similar to our task, in that this eval-
uation can only be performed by perceptual experiment. In their work they have subjects
observe three images at a time and perform paired comparisons. We use a similar approach
for evaluating the quality of results of different particleestimation methods. However, un-
like the work of Ledda et al., we do not present comparisons that record a direct preference
between two estimation methods.

3. PARTICLE SHAPE ESTIMATION

Our goal is to use 2D shape pro�les, such as those illustratedon the right of the lower
series of images in Figure 2, and estimate a 3D shape. Our 3D shape estimation will
be judged successful if 2D slices through a volume populatedby instances of the shape
produce 2D pro�les that are similar to the pro�les in the original sample. To estimate 3D
shapes from the 2D pro�les, we draw on previous methods discussed in Section 2.3 and
develop alternative techniques extending previous work.

A single slice through an aggregate material can reveal any number of 2D pro�les. Since
each pro�le results from a slice through a different particle, there is insuf�cient informa-
tion to reconstruct any single particle exactly. Without any a priori knowledge about the
particles, we need to rely on limited assumptions about their shape.

The spherical harmonicsand generalized cylindermodels described below were in-
troduced in prior publications; theconstructive solid geometryandmorphed generalized
cylinder methods are our own contribution to the problem. A detailed comparison of all
four algorithms is discussed in Section 4.

For all of the methods considered here, we assume that the particle shapes are genus
zero—i.e., the surfaces are topologically equivalent to a sphere. Furthermore, it is rea-
sonable to assume that the largest visible pro�les result from slices near the center of the
largest particles within the volume. Depending on the algorithm, one or more characteris-
tic pro�les are selected from an image and used as input. The pro�les are chosen by hand
and are expressed using a polygonal representation.

The methods differ in the number of pro�les that are used as input and how the pro�les
are incorporated into a 3D shape, as summarized in Table 6. For the spherical harmonics
method, only the frequency information of the 2D curve is considered (i.e. the coef�ecients
of a Fourier expansion of the curve expressed as a radius vector function), and the original
input pro�les are not preserved in slices through the synthesized particle shape. Any num-
ber of pro�les can be used as input. For the results shown here, three curves are always
used.
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The constructive solid geometry algorithm takes exactly three pro�les as input. In this
case, we assume that the pro�les represent the silhouette ofthe object as seen from three
orthogonal views. A geometric model is constructed in a manner that preserves the input
pro�les in the silhouette. However, the algorithm does not necessarily preserve the input
curves in slices through the novel particle.

For the generalized cylinder approach, two input pro�les are used. The �rst input curve
and half of the second are incorporated directly into the geometry such that the they can be
seen in slices through the resulting particle. The remaining half-pro�le is ignored.

Finally, for the morphed generalized cylinder method, three or more input pro�les can
be used. The examples shown here use exactly three inputs, which are preserved in the
construction process such that the same three pro�les can beseen in slices through the
resulting geometric shape.

Each of these four methods will be discussed in greater detail in the following sections.
Overall, we would expect that methods that use the greatest amount of data from the orig-
inal sample would produce the best results. We would also expect that more sophisticated
method used to interpolate or extrapolate the input would produce better results. We need
experiments however to determine whether the number of pro�les used has a signi�cant
impact, and whether more sophisticated methods improve results or produce unforseen
noticeable artifacts.

3.1 Spherical Deformation Models

A number of papers in both the graphics and stereological literature use spherical defor-
mation models as a foundation for representing particle shapes [Edvardson and Smedby
2002; Weistrand 2001; Hobolth and Jensen 2002; Hobolth 2003]. With these methods,
each particle is modeled as a sphere that is deformed inward or outward from its center.
Particles created with this technique are restricted to beingstar-shaped—i.e., all points on
the surface are visible from a single point within the particle.

In two dimensions, star-shaped pro�les can be expressed as aradius-vector function
r(q), 0 � q < 2p, which indicates the distance from the center of the pro�le to its bound-
ary in each radial directionq. This function can then be expressed as a Fourier series
expansion,

r(q) =
b0p
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+
¥
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p
cos(mq) +
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2p
dq

bc
m =

Z 2p

0
r(q)

1
p

p
cos(mq)dq; m� 1

bs
m =

Z 2p

0
r(q)

1
p

p
sin(mq)dq; m� 1

Similarly, in three dimensions, a star-shaped particle canbe expressed as a spatial radius-
vector functiond(q; f ), 0 � q < 2p, 0 � f � p. This function indicates the distance from
the center of the particle to its boundary in each polar direction (q; f ). Just asr(q) can be
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reexpressed as a Fourier series expansion,d(q; f ) can be rewritten as a Fourier-Legendre
series expansion

d(q; f ) = 1+
¥

å
n= 1

n

å
m= � n

am
nYm

n (q; f )

whereYm
n (n � 1; � n � m� n) are spherical harmonics.

Hobolth and Jensen create 3D particles based on 2D observations by relating the co-
ef�cients b0, bs

m and bc
m of the 2D Fourier expansion to the coef�cientsam

n of the 3D
Fourier-Legendre expansion [2002]. The 2D pro�le can be normalized via isotropic scal-
ing such thatb0 =

p
2p. We assume that the remaining Fourier coef�cients are distributed

according to a Gaussian function with mean 0 and variancekm:

km =
N

å
n= 1

bs
m+ bc

m

2N

Likewise, the Fourier-Legendre coef�cientsam
n are assumed to exhibit a Gaussian distri-

bution with mean 0 and variancel n. Hobolth and Jensen demonstrate that the coef�cients
am

1 can be ignored, and the remaining variance values are related by the expression

km =
¥

å
n= m

2n+ 1
2

(n� m)!
(n+ m)!

Pm
n (0)2l n; n � 2

wherePm
n are the associated Legendre functions of the �rst kind.

After solving for the variancesl n, Fourier-Legendre coef�cients can be chosen accord-
ing to the Gaussian distribution, resulting in particles that exhibit pro�les with comparable
frequencies to the input shape. It should be noted that any number of unique particles can
be generated with the recovered variance values.

This approach for particle modeling is mathematically rigorous but is poorly suited
for particles that exhibit sharp corners or distinct features. Coef�cients of the Fourier-
Legendre expansion are assumed to be mutually independent.This tends to eliminate the
presence of sharp angles or other features that may characterize the input. Furthermore,
Hobolth uses only ten expansion terms to approximate each shape, noting that the variance
of the terms becomes excessively noisy after that point [2003]. For our results, we use 30
expansion terms, but still fail to capture the sharp features of the input pro�les.

One inherent drawback of any spherical deformation method is the requirement that all
resulting particles must be star-shaped. This constraint becomes increasingly problematic
for long, slender particles with anisotropic shape characteristics.

3.2 Constructive Solid Geometry

If a static object is viewed from multiple calibrated viewpoints, then volume-carving meth-
ods can be used to approximate the geometry [Martin and Aggarwal 1983; Matusik et al.
2000]. In contrast, in a 2D sample of an aggregate material, only one slice through any
individual particle can be seen. In order to constrain the reconstruction problem, we se-
lect three characteristic pro�les, which we assume are silhouettes of a single target particle
shape, projected orthographically onto three orthogonally oriented viewing planes. We
align the three pro�les using a heuristic to determine a likely correlation and then apply
volume-carving techniques to yield an approximate 3D shape.
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(a) (b) (c)

Fig. 7. Constructive solid geometry (CSG) method for particle construction. Input pro�les (a) are extruded and
arranged orthonormally (b). The CSG intersection of the three extruded solids (c) yields a plausible 3D particle
shape.

This approach makes extensive use of constructive solid geometry (CSG) modeling
methods [Mortenson 1999]. The objective is to build a particle such that the orthographic
projection of the 3D shape in thex, y, andz directions yields scaled versions of the three
input pro�les. The basic approach is to extrude each of the three input pro�les and then
arrange the three extruded volumes orthonormally. The CSG intersection of the volumes
yields the particle. This process is shown in Figure 7.

In order to maintain the shape of the input pro�les during theCSG intersection operation,
the pro�les must �rst be transformed such that their bounding boxes have the dimensions
a � b, b � c, anda� c for somea, b, andc. In the �rst preparation step, each pro�le is
rotated such that the pro�le's second-order moment is aligned with thex-axis. The three
pro�les are then sorted according to the aspect ratio of their bounding boxes. This sorting
yields pro�les c0, c1, andc2, with decreasing aspect ratiocny=cnx, wherecnx andcny are
respectively the width and height of the bounding box ofcn. In order to minimize the
change in aspect ratio of the input pro�les, we select bounding box extentsa, b, andc as
follows:

a = c0x

b = c0y

c = c0xc2y=c2x

Finally, we scale the pro�les such that these dimension constraints are met, extrude each
pro�le in the direction perpendicular to the image plane, and arrange the extruded volumes
such that the bounding boxes are aligned as shown in Figure 7(b). The CSG intersection
of the extruded volumes is guaranteed to exhibit the three input pro�les when viewed
orthographically, regardless of the convexity of the inputshapes. However, this does not
necessarily mean that the input pro�les are preserved in slices through the novel particle.

The particles generated by this process tend to exhibit cross-sections that are perceptu-
ally similar to the input pro�les, with the exception of a fewlong, slender shapes or hard
corners that may be introduced by the process. It should be noted that at every point on the
particle, the surface normal will be perpendicular to either thex-, y-, or z-axis. This results
in a faceted look that may make this modeling approach unsuitable for applications where
the complete 3D particles are viewed directly.
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s(t) b(t)

p(ts, tb)

Fig. 8. Generalized cylinder method for particle construction. The construction curves shown on the left are used
to create the particle shape on the right.

3.3 Generalized Cylinder Model

Dischler and Ghazanfarpour model macroscopic particles using a generalized cylinder
method [1999]. The inputs to the algorithm are two representative particle pro�les—a
sweep curves and a base curveb. The sweep curve is formed by cutting a pro�le in
half along a vertical line that passes through its centroid.The other half of the pro�le is
discarded.

Dischler and Ghazanfarpour choose to represent these two curves as radius-vector func-
tions,s(q) andb(q), 0 � q < 2p, which are expressed as interpolating cubic splines with
32 vertices at regularly spaced angular intervals. When using this representation, pro�le
shapes are constrained to being star-shaped, as are novel particles generated by the method.
To enable the algorithm to operate on a larger class of geometric inputs, we relax this con-
straint by instead expressingsandb parametrically as a function oft, where 0� t � 1:

s(t) =
�

xs(t)
ys(t)

�
andb(t) =

�
xb(t)
yb(t)

�

Using the curvess and b, a 3D particle can be constructed by sweeping the curves
around the base pro�leb to form a generalized cylinder as shown in Figure 8. The axis of
rotation is de�ned to be perpendicular tob, passing through its centroid. Curves is then
oriented perpendicular to curveb such that its endpoints lie on the axis of rotation ands
is tangent tob(t) at t = 0. The particle shape is de�ned by the set of all pointsp(tb;ts),
0 � tb < 1 and 0� ts � 1, such that

p(tb;ts) =

2

4
xb(tb)xs(ts)=kb(0)k
yb(tb)xs(ts)=kb(0)k

ys(ts)

3

5

where the normalization termkb(0)k is used to insure that curves remains tangent tob.
Figure 9 shows some example particle shapes generated by thegeneralized cylinder

algorithm. The process is intuitive and can be used to generate a variety of geometric
shapes; however, the particles created by this method tend to have a synthetic appearance,
as they exhibit clear symmetry around the axis of rotation.

ACM Transactions on Applied Perception, Vol. V, No. N, Month20YY.



16 � R. Jagnow et al.

Fig. 9. Example shapes created by the generalized cylinder method. The construction curves shown in the top
row result in the particle shapes in the bottom row.

Input curves Resulting shape

Fig. 10. Morphed generalized cylinder method for particle construction. The base curve (red) and morph curves
(green and blue) result in the shape shown at the right.

3.4 Morphed Generalized Cylinder Model

The �nal particle generation algorithm that we consider is anovel approach introduced
here. The method is motivated by the idea of establishing a set of orthogonally oriented
wireframe constraints and then creating a naturally shapedparticle that smoothly interpo-
lates between the constraints. The particle is created in a manner similar to that described
for the Generalized Cylinder Method, with the exception that the generatrix curve is mor-
phed from one constraint to the next as it is swept along the directrix, or base curve.

To begin, the input pro�les are reoriented and sorted as indicated in Section 3.2. As
described in the previous section, the base pro�leb—shown in red in Figure 10—is used
as the directrix. The remaining curves, which we will refer to as morph curves, collectively
take the place of the sweep curves used in the generalized cylinder algorithm. Ifn total
pro�les are used as input, then morph pro�lesm0 throughmn� 2 are oriented perpendicular
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m0(t)

m1(t)

b(t)

p(tm, tb)

m0(t)

m1(t)

b(t)

m(t)

Fig. 11. Construction process for the morphed generalized cylinder method. The construction curves shown on
the left de�ne the portion of the particle shape shown on the right.

to the base curve with equal angular spacing around the axis of rotation. For the examples
shown in this research, three total curves are used, and the pro�le with the aspect ratio
closest to one is selected as the base curve. However, it should be noted that different
particle shapes can be generated either by using a differentnumber of input curves or by
considering alternate permutations of the input pro�les.

The next step is to scale each pro�le to guarantee intersections at the black points shown
in Figure 10. Meeting these constraints can be a dif�cult task if pro�les are modi�ed with
uniform linear transformations. The algorithm does not restrict the pro�les to be star-
shaped, so the optimization space can be discontinuous and arbitrarily poorly behaved.
Instead, we choose to meet the constraints by cutting the morph pro�les at each point
where we expect two pro�le curves to meet. We then scale each region of the pro�le
independently.

To insure that each morph curve lies tangent to the base curve, morph pro�les are scaled
inward or outward from the axis of rotation. Next, we scale the curves along the axis of
rotation to insure a common intersection at the poles.

In order to apply the morphed generalized cylinder algorithm, we need to establish a
parameterization that allows for interpolation between successive morph curves. We have
chosen to parameterize each pro�le according its normalized arc length [Verth and Bishop
2004].

The cumulative length along a curves(t) = [ x(t);y(t)]T , 0 � t � 1 can be expressed as
follows:

l (t) =
Z t

0

q
x02(t) + y02(t)dt

To reparameterize the curve by its normalized arc length, wecreate a new expression
sR(t) such that

sR(t) = s(l � 1(l (1)t)) ;

noting thatl (1) is the total length of curves. For the remainder of this section, we will
assume that all curves have been reparameterized accordingto their arc length.

To demonstrate the construction process, we consider, without loss of generality, the re-
gion of the surface enclosed by three curves—morph curvesm0(t) andm1(t) and a portion
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of the base curveb(t), as shown in Figure 11. We express the three curves parametrically,
parameterized according to their arc length, such that for each curve region, 0� t � 1:

m0(t) =
�

x0(t)
y0(t)

�
, m1(t) =

�
x1(t)
y1(t)

�
andb(t) =

�
xb(t)
yb(t)

�
:

The morphed generalized cylinder algorithm creates a 3D particle by interpolating the
shape of the morph pro�les. We use the morph curve,m, as the generatrix as it is swept
along the directrix, or base curve,b.

At an intermediate positiontb between morph curvesm0(t) andm1(t), we linearly inter-
polate to de�ne the morph curve,

m(tb;t) =
�

xm(tb;t)
ym(tb;t)

�
= ( 1� tb)m0(t) + tbm1(t):

With the help of this expression, we can de�ne our desired surface as the collection of
all pointsp(tb;tm), 0 � tb � 1 and 0� tm � 1, such that

p(tb;tm) =

2

4
xb(tb)xm(tb;tm)=km(tb;1)k
yb(tb)xm(tb;tm)=km(tb;1)k

ym(tb;tm)

3

5 : (1)

By interpolating the pro�les individually over each regionenclosed by three curves, we
are able to guarantee that all of the initial constraints aremet precisely. The normalization
termkm(tb;1)k in Equation 1 is necessary for enforcing this condition. An example shape
generated by this process is shown on the right side of Figure10.

4. ALGORITHM COMPARISON

All of the methods described in the previous section produce3D shapes from 2D pro�les
and could be used to approximate a 3D solid texture. We developed the CSG and mor-
phed generalized cylinder techniques in the belief that they would better approximate a
wide range of shapes. To evaluate the relative performance of each of the four proposed
algorithms, we consider the use of automated comparison metrics based on perceptually
motivated criteria, as well as a user study in which participants attempt to discriminate be-
tween original and synthetic shape data. Our hypothesis wasthat simple 2D shape metrics
would be adequate to evaluate the relative performance of the various algorithms. If the
automated shape metrics were successful, they would be easyto use in the evaluation of
further re�nements of our shape estimation algorithms.

The particle shapes used as a basis for comparison were obtained from 3D scans of four
different rocks that were deliberately selected to span a wide variety of input appearances.
Thesmoothparticle is a rounded, convex surface. Theelongatedshape is more elliptical
with a few sharp edges. Thefacetedmodel is nearly convex and exhibits a number of
sharp edges. Finally, thecomplexmodel is highly non-convex and is the only one of the
four meshes that is not star-shaped.

Each particle was approximated with each of the four reconstruction methods, resulting
in a total of 20 particle shapes, including the originals. The input to the algorithms came
from three orthogonally oriented pro�les taken from the original particles. The orthonor-
mal basis was selected to correspond approximately with each particle's �rst and second
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Fig. 12. In the left column are the four scanned particle shapes used as the inputs to the shape approximation
algorithms. To the right are the decoy particle shapes created by each of the four particle approximation methods.

moments of inertia. Each of the 20 polygon meshes was scaled uniformly to insure that all
particles have the same volume. Figure 12 shows the originalparticle shapes and the de-
coy particles generated by each algorithm. Randomly selected central slices through each
particle are shown in Figure 13.

4.1 Automated Performance Evaluation

For the purposes of this research, it is important that the synthetic particle shapes have a
plausible appearance and that the particles yield pro�les that are perceptually similar to the
example data. Thus, we choose to evaluate the resulting particle shapes based on metrics
that are motivated by human perception. Curvature in two dimensions is theorized to be
an important characteristic identi�ed by low-level human perceptual mechanisms [Dobbins
et al. 1987; Or and Zucker 1989; Ben-Shahar et al. 2003]. The two metrics that we consider
here are the total curvature magnitude of a pro�le and the measure of area per perimeter
squared, also known as circularity [Gardner et al. 2004; Loncaric 1998; Li et al. 2003].
Each is an indicator of the visual complexity of a curve.

The total curvature magnitude is computed by summing the absolute value of the change
in angle at each point along the curve. If the pro�le is convex, then this value sums to 2p.
Higher values indicate a higher degree of shape concavity. The circularity metric can range
from a value of zero for degenerate shapes with zero area to a maximum of 1=4p, which
can only be achieved by a perfect circle.

To produce the values shown in Figure 14, we created a utilitythat sliced through each
particle 10,000 times at uniformly distributed random orientations. We applied the auto-
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Fig. 13. This table shows randomly selected central pro�lesfor each original and synthesized particle shape.
Pro�les that we judged to be poorly matched to the original data are highlighted in color. Red pro�les are overly
curved or blobby, yellow pro�les exhibit excessively sharpcorners, and green pro�les show symmetry that is not
present in the original data.

mated metrics to the pro�les and averaged the resulting values.
For the two graphs in the top row, the particles were always sliced through their center of

mass. This yields pro�les with relatively uniform statistics but fails to capture anomalous
appearance characteristics that may occur at slices that are more distant from the particle
center.

In the second row, the values were obtained by slicing particles at both a random ori-
entation and a random offset from the particle's center of mass. The values obtained in
this manner statistically represent the pro�les that are visible in a slice through a volume
of particles embedded in an opaque medium, much like the image shown in Figure 1(a).
As expected, these pro�les exhibit a greater diversity of appearances, resulting in higher
standard deviation values.

To analyze the signi�cance of these results, we apply analysis of variance (ANOVA).
For all of the datasets considered, we set a threshold of signi�cance at p � 0:01. Our �rst
concern is whether the measures we used were sensitive to thedifferent particle shapes.
Secondly, we wish to see if they reveal differences in the particle estimation methods. For
each of the four tables in Figure 14, a two-way analysis of variance (ANOVA) reveals a
signi�cant dependence on shape and choice of algorithm (p < 0:001), and also indicates
signi�cant interaction between the two factors (p < 0:001).

Figure 15 summarizes the shape statistics, showing the average deviation from the origi-
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Profile slices through particle origin

Fig. 14. Original and synthetic particle shapes are compared via two measures of 2D visual complexity: total
curvature and area/perimeter2 . These charts show the mean and standard deviation values obtained from 10,000
random slices through each particle shape. The top row showsvalues obtained from slices passing through the
center of the particles. In the second row, slices are randomly selected.

Metric Pro�le Slice Algorithm
Morphed

Spherical
CSG

Generalized
Generalized

Harmonics Cylinder
Cylinder

Center of Mass 5.0% 2.5% 1.6% 1.4%Area/Perimeter2
Random 4.0% 5.4% 1.9% 1.6%

Center of Mass 27.8% 20.6% 8.2% 9.5%Total Curvature
Random 19.5% 18.6% 7.8% 9.3%

Fig. 15. Average deviation from original data values for each algorithm, as measured for each of the two metrics
and pro�le slicing techniques.

nal data for each of the shape approximation algorithms. Based on these values, we see that
the generalized cylinder and morphed generalized cylindermethods perform better than
the spherical harmonics or CSG methods for matching the given shape statistics. However,
there is no consensus on a total ordering of the four algorithms.

These methods attempt to capture perceptually meaningful criteria with a simple metric,
but there are some drawbacks to the approach. The total curvature metric is sensitive to
shape tessellation. Highly tessellated pro�les may include high-frequency information that
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increases the total curvature magnitude without greatly contributing to the overall appear-
ance of the shape. To a lesser extent, the perimeter calculation is also susceptible to this
problem. Furthermore, as shown in Figure 13, some of the characteristics that distinguish
the decoy pro�les from the original pro�les include the presence or absence of sharp cor-
ners, as well as the presence of symmetry. These characteristics, while easily seen by a
human observer, are not captured by the statistics considered here. Our original hypoth-
esis that the simple automated shape metrics would be adequate to evaluate the proposed
algorithms was contradicted by our own casual observation.To obtain more de�nitive re-
sults, we constructed an experiment to obtain more formal input from human observers, as
described in the following section.

4.2 User Study

To obtain a direct evaluation of the four proposed algorithms for shape approximation,
users were shown a series of images in a computer-based test in which they were asked
to evaluate shape similarity. Since any two particles are clearly going to have different
shapes, we constructed a test where the users would judge thesimilarity of clusters of 2D
pro�les. We authored a user study in which participants attempt to distinguish between
original and synthetic 2D slices obtained from 3D volumes ofparticles.

4.2.1 Data. All of the data used in the study was synthetically produced in order to
keep the images free of noise, which would otherwise lend a distinctive appearance to the
physically captured images. Further, we chose to use particles of uniform size rendered as
solid black and white images to eliminate the effects of variations in particle size distribu-
tion and color estimation.

The study used the same four particle shapes described previously and shown in Fig-
ure 12. For each shape, a synthetic volume of 1000 cubic unitswas populated with parti-
cles of constant size. The volumes for thesmooth, elongated, andfaceteddatasets contain
4000 particles, each of which has a size of 0.125 cubic units.Thus, 50% of the volume
is occupied. The datasets for thecomplexparticle shapes contain 3500 particles, yielding
volumes that are 44% occupied. (The geometric nature of the complex particles does not
allow them to be packaged as tightly, so fewer of the complex particles of the constant
size could be packed into the test volume.) For each shape, �ve synthetic volumes were
generated for each particle type – one for the original particle, and one each for each of the
shape estimation methods. Images were formed for use in the study by taking random 2D
slices through these synthetic volumes. Figure 17 shows thevariation in appearance of 2D
slices taken through the volumes containing the original particles.

4.2.2 Procedure.To evaluate the effectiveness of the methods, study participants were
given a computer-based test to compare image similarity. Similar to the approach used by
Gurnsey and Fleet [Gurnsey 2001], users were shown a series of screens, each containing
three images in a row, as depicted in Figure 16. In most instances, the center image and one
of the adjacent images were generated by taking a slice through one of the four original
volumes. The third image was generated by taking a slice through a decoy volume, gener-
ated using one of the four proposed methods. Users were askedto click on the image that
appeared to be the least like the center image and were explicitly asked to evaluate the im-
ages based on the shape of the visible pro�les rather than their size, density, or distribution.
The test interface measured the accuracy and time required to make each selection. Note
that unlike the Ledda experiment described earlier, the observer is not selecting a prefer-
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Fig. 16. Example screen from user study. Users are asked to select the image that is least similar to the image in
the center. Here, a decoy image is shown on the far right.

Fig. 17. Examples of the variation in appearance evident in the original distributions. All three of the images in
each column are taken from the same 3D distribution of particles.

ence between two estimation methods, but is always making a choice between an image
generated by an estimation method and an image generated from the same test volume as
the center reference image.

To establish a baseline for the average selection time, 20% of the test screens contained
three images that were all taken from the same volume. This isused to measure user
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Fig. 18. User study results showing the relative performance of four different algorithms for extrapolating particle
shape based on limited shape information. The graph on the left shows the frequency with which users were
“fooled” by a decoy model. Average selection times are shownon the right. Mean and standard deviation values
are shown for both graphs.

response to anidealparticle—i.e., a theoretical decoy particle that has an identical appear-
ance to the original shape.

The images used for the study depict black particles on a white background and are an-
tialiased with a size of 250x250 pixels. Images were separated by 40 pixels of a neutral
grey color. Users were seated comfortably in a dimly lit roomat a distance of approx-
imately 55cm from the computer monitor. Each image was shownat a size of 7.8cm,
forming a visual angle 8.1 degrees.

In accordance with the guidelines established by the MIT Committee On the Use of
Humans as Experimental Subjects (COUHES), each participant in the study was given a
detailed written description of the study procedures, as well as a summary of their rights as
a research subject. All study participants are members of the computer graphics and com-
puter vision communities at MIT; none had detailed knowledge of the speci�c algorithms
being tested. Participation was completely voluntary, andusers were not compensated in
any form.

Prior to the start of the test, users were given a brief training session, which included
an example test with ten evaluations to familiarize them with the task and interface. The
complete test contained 80 questions—four for each particle/algorithm combination, plus
four questions for each particle shape in which no decoy was shown. The questions were
presented in a different random order for each user, and images were randomly selected
from a database for each screen. Between evaluations, userswere shown a neutral grey
screen for one second.

4.2.3 Results.Sixteen users participated in the study, yielding 1280 individual data
points. The results of the study are summarized in Figure 18.In the �rst chart, we see the
success rate at which the decoy particles were selected by the users. In the case of an ideal
decoy particle, we would expect a success rate of 50%; i.e., we expect that a user would
be equally likely to select the image from the original volume or the decoy volume. This
baseline value is indicated by the light blue bar at the far left.

These values indicate an ordering of algorithm effectiveness, ranking the morphed gen-
eralized cylinder method clearly higher than the constructive solid geometry and spherical
harmonic methods. One-way analysis of variance (ANOVA) demonstrates that decoy suc-
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Fig. 19. Detailed graph of user study results showing variation between input datasets. The graph on the left
shows the frequency with which users were “fooled” by a decoymodel. Average selection times are shown on
the right. Mean and standard deviation values are shown for both graphs.

cess has a signi�cant dependence on the algorithm used (p < 0:001).
These same results are re�ected in the second table in Figure18, which shows the aver-

age time the users spent making their selections. The baseline time is shown in light blue
on the far left; this represents the case where all three images were derived from the same
volume and can be considered to be indicative of selection time for an ideal decoy parti-
cle. Again, ANOVA indicates a signi�cant dependence on the algorithm used to create the
decoy particles (p < 0:001).

Selection time should not, in and of itself, be considered a measure of algorithm per-
formance. It does, however, provide some indication of how much user effort is involved
in assessing shape similarity. In this study, we have chosento use the metric to validate
the results obtained in the ranking of decoy success. The relation between the measures of
decoy success and selection time can be clearly seen from a comparison of the two charts
in Figure 18.

As shown in Figure 19, the behavior of each algorithm can be considered more precisely
by breaking apart the data and looking at how the performanceof each method varies with
different input parameters. Two-way analysis of variance applied to the decoy success
rate indicates that performance has a signi�cant dependence on the algorithm used (p <
0:001) as well as the shape that is being approximated (p = 0:003). Furthermore, ANOVA
indicates a signi�cant interaction between the algorithm and shape (p < 0:001).

5. DISCUSSION

Considering all datasets combined, the morphed generalized cylinder algorithm generates
signi�cantly more successful decoys than the spherical harmonics or CSG method. While
the overall success rate is higher for the morphed generalized cylinder than the generalized
cylinder, the difference is not statistically signi�cant in our data. The desired 50 % success
rate that would be obtained by chance is outside the range of plus or minus a standard
deviation for even the morphed generalized cylinder method. Overall this indicates that
there is room for improvement in estimating particle shape.

The detailed analysis by particle class indicates that the CSG and spherical harmonics
algorithms are completely unacceptable for some particle classes. The spherical harmonics
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algorithm is acceptable for replicating the appearance of smooth surfaces that lack sharp
features, but always failed for elongated shapes and faceted particles. In contrast, CSG
provides a reasonable approximation for elongated particles or surfaces with sharp edges,
but always failed for smooth shapes.

The detailed results by particle class do not show a signi�cant difference in the gener-
alized and morphed generalized cylinder methods. In choosing between them though it
should be noted that the average minus standard deviation inthe success rate is always
highest for the morphed generalized cylinder method.

Once again, selection time should not be considered as a direct measure of algorithm
performance but serves to validate the ranking of decoy success. For the most part, the
relative values in the left and right tables of Figure 19 are well-correlated. Two-way anal-
ysis of variance on the selection times indicates a signi�cant dependence on the algorithm
(p < 0:001). However, selection time does not exhibit a signi�cantdependence on the
particle shape (p = 0:36), nor does ANOVA indicate a signi�cant interaction between the
algorithm and shape (p = 0:16).

When looking at the standard deviation values in Figure 19, it should be remembered
that each user observed only four instances of each combination of shape and algorithm.
For a rating of decoy success, this results in only two bits ofinformation, yielding values of
0%, 25%, 50%, or 100%. High levels of variability in these values should be expected, but
this does not diminish the statistical signi�cance of the �ndings. For both graphs, ANOVA
demonstrates a signi�cant dependence on the algorithm, indicating that spending effort
on improving the shape estimate algorithm is worthwhile. Even by the most optimistic
estimate, none of the algorithms can produce particle shapes that are indistinguishable
from the originals, suggesting that time would be better invested in improving the two
more successful approaches rather than running more experiments to re�ne the ordering of
the methods.

The relatively poorer performance of the spherical harmonics and CSG methods pro-
duced by the user study should come as no surprise based on theinput data for each ap-
proach and how that information is used. The spherical harmonics method considers only
particle curvature while ignoring the �rst-order shape statistics of the input pro�les. The
CSG modeling approach incorporates three pro�les directlyinto a resulting shape, but does
not make an effort to interpolate smoothly between the shapes.

The lack of greater difference in the performance between the other two methods is
somewhat surprising. The generalized cylinder performs smooth shape interpolation, but
only considers two pro�les as input. The morphed generalized cylinder performs smooth
shape interpolation and incorporates three input pro�les directly into the resulting 3D parti-
cle shape. In general, we would expect the results to favor those algorithms that incorporate
more information from the original data set using an intelligent interpolation algorithm. In
this case, we did not observe as strong an effect as we had expected.

Comparing the user study and the automated metrics, the automated metrics do not
successfully capture the perceptual similarity of shapes to the degree needed to evaluate the
four estimation methods. Each of the metrics ranks the generalized cylinder and morphed
generalized cylinder methods above the spherical harmonics and CSG methods, but there
is no consensus on the total ordering. The signi�cant shortcoming of the automated metrics
is that they do not reveal the failure of some of the methods toever adequately simulate
some particles shapes—i.e. the zero success rate of the CSG method to simulate smooth
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shapes or the spherical harmonic methods to simulate elongated or faceted shapes.
The automated metrics presented here were clearly unable tocapture some of the ap-

pearance characteristics that were discerned by the user study. To improve automated
prediction of perceptual shape similarity, additional metrics should be considered that ac-
count for symmetry, anisotropy and the presence of sharp corners. A number of other 2D
shape metrics have been introduced within the computer vision community, but the vast
majority are designed to identify object features—often points with high curvature—for
object recognition. Unfortunately, these types of established metrics are of limited use
when attempting to quantify the subjective similarity of abstract shapes.

We believe it would be particularly useful to derive a metricthat computes the distri-
bution of curvature along the edges of a 2D polygon. Such a metric could indicate the
presence of sharp corners, as well as smooth lines along the boundary of a 2D shape. In
practice, we have had dif�culty in deriving such a metric, asthe methods that we have
considered are sensitive to polygon tessellation and coincident or near-coincident vertices.

The metrics described here may be considered as coarse predictors for shape similarity,
but these automated techniques should not be treated as equivalent replacements for direct
user evaluation. Further improvements in estimating shapefor solid texture synthesis will
need to continue to rely on psychophysical experiments rather than on existing simple
shape metrics.

6. CONCLUSIONS AND FUTURE WORK

We have presented and evaluated four methods for predictingparticle shape for use in 3D
solid texture synthesis. Of the four algorithms consideredhere for replicating aggregate
materials, this research points to the generalized and morphed generalized cylinder meth-
ods as the most effective for approximating 3D particle shapes from 2D pro�les. The other
methods—constructive solid geometry, and spherical harmonics—are each effective within
certain domains, but do not generalize well to a wide varietyof input shapes.

The automated techniques considered here are marginally successful for predicting al-
gorithm performance from a psychophysical standpoint. Methods that better capture sharp
features on numerically de�ned shapes are needed. Even modest contributions in this area
could be of great assistance to perceptually-driven research, as it is infeasible to always
seek direct user evaluation in the form of a thorough, bias-free user study.

Although this research was primarily focused on the problems of shape perception and
texture synthesis, the algorithms described here might also be applied to other problems
within computer vision and computer graphics. Since pro�les offer a compact representa-
tion of a shape, some of these algorithms may be considered for geometry compression.
Future research may also consider the use of the morphed generalized cylinder algorithm
as a general modeling approach for creating 3D geometry fromsimple, limited user input.

The work presented here is an example of a class of computer graphics problems that can
only be approached using perceptual principles and experiments. Three dimensional solid
texture modeling is one aspect of the broader area of materials modeling. Real materials
exhibit highly detailed spatial variations due to weathering and aging effects that we cannot
expect to perfectly replicate in simulation. Physically accurate spatial variations of texture
as a function of object geometry are expensive to simulate orcapture. Rather than the
informal evaluations used for material modeling today, perceptual methods will play an
increasingly important role in the future in developing ef�cient texture synthesis methods.
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Additional techniques are needed for evaluating similarity on a higher level rather than
evaluating whether two images are simply identical.
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