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In modern computer graphics applications, textures play an important role in conveying the
appearance of real-world materials. But while surface appe arance can often be e ectively captured
with a photograph, it is dicult to use example imagery to syn thesize fully three-dimensional
solid textures that are perceptually similar to their input s. Specically, this research focuses
on human perception of 3D solid textures composed of aggrega te particles in a binding matrix.
Holding constant an established algorithm for approximati ng particle distributions , we examine
the problem of estimating particle shape. We consider four methods for approximating plausible
particle shapes|including two methods of our own contribut ion. We compare the performance
of these methods under a variety of input conditions using au tomated, perceptually-motivated
metrics as well as a psychophysical experiment. In the cours e of assessing the relative performance
of the four algorithms, we also evaluate the reliability of t he automated metrics in predicting the
results of the experiment.

Categories and Subject Descriptors: |.®Mputer Graphics]: Computational Geometry and Object Modeling—
Geometric algorithms, languages, and systems; HMa2lgls and Principleg: User/Machine Systems—Human
factors

General Terms: Algorithms, Human Factors
Additional Key Words and Phrases: shape estimation, shape p erception, texture synthesis, solid
textures, volumetric textures

1. INTRODUCTION

One of the most common objectives in computer graphics isgtaate the appearance of
real-world objects in a simulated digital environment. tagtice, this frequently involves
the use oftexture maps-images that are mapped to the surface of synthetic objects t
convey the appearance of spatial variation within a mdtdf@ many objects, 2D images
are suf cient; however, for objects formed from materiaighwnherent 3D structure, it can
be dif cult to nd a 2D image mapping that adequately repnetsethe material variation.
As an alternative to 2D image maps, the use of 3D solid tegtiias proven successful for
modeling materials with internal 3D structure [Gardner4;®eachey 1985; Perlin 1985].
Three dimensional solid textures are volumes that contamaterial description at each
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Fig. 1. Frequently a 3D solid texture can only be sampled &3 arfage, such as shown in (a). To synthesize
objects made of this material a 3D structure, such as showi)jmeeds to be generated. There is no unique
solution for the 3D structure associated with a 2D image.

pointin space.

In this work, we consider the class of aggregate materiatgposed of discrete particles
in a binding matrix. A distinguishing feature of objects reaaf such materials is that the
shapes of the cross sections of the discrete particleseadyclisible. Common examples
of such materials include concrete, asphalt, terrazzo eantg. For these material types,
an explicit volumetric representation can convey a conmpgglnaterial appearance. For
instance, Figure 1 shows a 2D image of matedgtliat was used to extrapolate a plausible
3D structure f). In this case, we generated the resulting object by smiitthe material
along its aggregate boundaries, thus exposing the intstnadture. The general problem
of reconstructing a 3D volume from a 2D image is heavily urst@ined with no unique
solution. Furthermore, the solution cannot be comparedtgnji-point to some ground
truth, so we must instead use appearance as a mechanisness #ss effectiveness of
various computational methods.

In prior research, we studied forming 3D structures wherptrécle shapes are known
a priori. For this case, we can use a mathematical relationship fteraeadogy for recov-
ering a unique 3D particldistribution given only a 2D image of a planar sample of the
material [Jagnow et al. 2004]. In the original 2D image we paie the distribution of
cross sectional areas. Using the mathematical relatipristtiveen 2D and 3D distribu-
tions and the known particle shape, we can generate a 3D eotdrparticles. New 2D
images can be generated from this 3D volume. We were ablenouigrate that new 2D
slices through this volume produced the same distributfocrass sectional areas as the
original sample image.

In this paper, we instead focus on approximating plaushkpedor individual parti-
cles, a problem that does not have unique mathematicali@oluThe dif culty in esti-
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Fig. 2. The dif culty of estimating 3D shape from 2D imagessiites depends on how much is known about the
sampling process. The examples at top and bottom show agotivgpview (left), top view (center), and section
view (right) of planes slicing shapes. In the example at dpe the location and orientation of slices through a
simple shape are known, generating pro les on the right ¢énatrelatively easy to link together to estimate 3D
shape. In the example at the bottom, a single slice is olutaim®ugh many instances of the shape. Since the
orientation and position of the shapes relative to the gliaae are unknown, it is not as clear how to connect the
resulting 2D pro les to estimate the shape.

mating a plausible shape from 2D images obtained from blotksaterial is illustrated in
Figure 2. The top of Figure 2 shows a simpler problem of edtimgahe shape of a particle
by taking multiple slices. If the spacing and orientationhd slices are controlled, the se-
guence of circular pro les shown at the right would be ob&inWith known slice planes,
the points on all of the pro les can be located in a single 3Drdinate system as a “point
cloud”. By simply stitching together the pro les we couldtiesate particle shape. More
sophisticated algorithms for interpolating point cloudsewith geometric guarantees for
the quality of the approximation of the original shape [Anzeet al. 2001].

The bottom of Figure 2 shows the more complicated problenstifnating the shape of
particles in an aggregate material. We obtain a single,slateer than a series of slices.
The single slice passes through many instances of the leartind so produces many
pro les in the single image. The particles are arbitrariieoted and positioned relative to
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the slice plane, so we cannot easily stitch them togetheralkena shape estimate in this
case. Analogous to the distribution problem, we would likentd a relationship between
the 2D shape of these pro les and the 3D shape. Unlike theiloigion problem, there is
no unique mathematical relationship that we can use. Alsdogous to the distribution
problem, we would like to be able to demonstrate that the ehay the cross sections
produced from the estimated 3D shape are the same as thesshape original sample.
Unlike the distribution problem, there is no simple methattwe can rely on to measure
if the 2D shapes are the same.

In this paper we consider different algorithms for estimgtihe 3D particle shape from
a 2D sample. In the absence of an established metric for cangphe similarity of the
2D cross sections derived from our 3D estimates to the 2Dsestions in the original
sample, we evaluate our results from a psychophysical pantwith perceptual exper-
iments. Our objectives in this research are twofold. Out asd primary goal is to use
direct observer evaluations to determine which algoritlnesmost effective for generat-
ing 3D particle shapes that exhibit 2D pro les with a compHdesappearance to the input
data. Our second objective is to assess how reliably simypheenical metrics serve as
predictors of the psychophysical evaluation. If simplenstcan be found to predict the
psychophysical evaluation, they could be used in furthgordthm development in place
of observer evaluations.

While the speci ¢ contribution of this work is the descrigti and evaluation of a partic-
ular method for texture synthesis, at a more general levat@ntribution is the description
of a problem in computer graphics that camly be addressed with perceptual principles
and experiments. Unlike much recent work in applying petieaiprinciples to computer
graphics rendering and modeling, we are not seeking an gippation to an image, model
or animation that is perceived as identical to gold stand&at example, in modeling a
shape, there are metrics from outside of psychophysicsirjonim distance between sur-
faces) that can be used to assess how close an approximétioa shape is to a gold
standard exact shape. It is possible to show that one shapex@pation is more accurate
than another using purely numerical metrics without psptiysics. Observer experiments
are performed to relate the numerical metrics to their get=d importance and re ne the
use of numerical metrics [Watson et al. 2001]. In anothengxa, simulating visible light
transfer, there are numerical metrics (difference in nackeestimated for a pixel) that can
be used to assess how close an approximation of a lightingiaolis to a gold standard
exact solution. It is possible to show that one method formating light transfer is better
than another by showing that the radiances calculated aserclo the gold standard. Ob-
server experiments are performed to relate numerical acgwf radiance to its perceptual
importance and re ne the requirements for accuracy of ligamsfer for image synthesis
[Martens and Myszkowski 1998]. In the case of generatinglgektures we are not at-
tempting to approximate pixel by pixel identical images @eritical shapes. We do not
have an accepted numerical metric outside of psychophtysitsan guide algorithms and
allow us to determine that method A is better than method BsBlid texture synthesis we
need psychophysical experiments and metrics both to eeaflgorithms and to establish
numerical metrics that can be used in future algorithm dmrakent. In general, computer
graphics algorithms for simulating the appearance of rasefall into this class.

There has been considerable work recently on texture syistfe computer graphics
[Turk 2001; Wei 2003; Ghazanfarpour and Dischler 1996; Bliscand Ghazanfarpour
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1999; Wei and Levoy 2001; Zhang et al. 2003; Lefebvre andiR@@00]. Despite the
fact that these computer graphics techniques do not pragwtéres that are identical to
previous texture synthesis techniques, they have not lestedtwith psychophysical met-
rics or experiments. Texture synthesis techniques in céenmaphics are evaluated with
respect to computational ef ciency and casual visual icsipa. While texture similarity
has been studied in great depth in the vision literaturéutexsynthesis applied to 3D ob-
jects for the generation of realistic images has not. A gieat of work in understanding
perception of textures in the vision literature has coneetl on understanding textures in
the abstract without context in order to understand basieatimechanisms. The graphics
texture synthesis problem differs in that whether textaressuccessful depends on con-
text. If an image of fur is used as an example input, the texg@nerated should look like
fur, and should look like natural fur when applied to a 3D maafea dog or cat. More
relevant to the work presented here, if an image of an agtgegaterial is used as exam-
ple input, the texture generated should look like an agdeegdn object should look like

it was shaped from the solid when the texture is applied erdtan looking like it was
papered over with prints of an aggregate texture. To achimse results, texture synthesis
techniques in computer graphics often model physical mseE® such as cutting through
a three dimensional solid, rather than relying on purelycéat processes such as adding
and modifying signals of varying spatial frequency. The kvpresented here is a small
step in the perceptual evaluation of texture synthesis gopé&he simulation of material
appearance for realistic 3D modeling.

Our primary goal in this paper is evaluating methods fomeating the 3D shapes of
particles used in solid texture synthesis. In our experisyare are interested in nding
methods that are clearly superior or inferior. As a consegeiewe have different require-
ments in our experimental methods as compared to prior wwestigating fundamentals
of human vision. For methods that clearly fail, we do not nieedd precisely how poorly
they perform by conducting extensive experiments. Funtioee, we can only test a nite
number of cases for a type of input data for which there is noitike test set that covers
all possible problems. In the end our results indicate tsendt precise measures of the
quality of output for each algorithm for any possible input.

In the next section we review relevant previous work in textapping, texture syn-
thesis, shape estimation and shape evaluation. We follmatith a description of four
candidate methods for estimating particle shapes fronr 2i@ipro les—spherical har-
monics, constructive solid geometry, generalized cylindand morphed cylinders. Next
we describe the evaluation of the results of these methadg ssnple numerical metrics
(total curvature and area to perimeter squared ratio) areddtydy with human observers.
We found that the simple numerical metrics were not sucaésspredicting the results
of the observer study. In the observer study we found thatdfatbe methods, spherical
harmonics and constructive solid geometry, always prodisbapes that were easily dis-
tinguishable from shapes produced from a synthetic grotuit tnodel for some classes
of particles. The other two methods were not signi cantlffetient from each other in
their success when the results of all particle classes vaendined. The morphed cylinder
method produced the greatest percentage of successfitsregien the oor of average
results minus standard deviation is considered for eacds @& particle separately. We
found that even the morphed cylinder method however did raxtyce results comparable
to sampling the original synthetic ground truth volume,itading that there is room for
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Fig. 3. In 2D texture mapping an image is assigned to a 3D bg¢écThe mapping is performed by establishing
correspondences between locations on the 2D image and thabjgbt. Many possible correspondences are
possible, giving signi cantly different results (b).

improvement in the shape estimation problem.

2. PREVIOUS WORK

This research builds on a variety of related work in the acd@®mputer graphics, com-
puter vision, andtereology—the study of three dimensional structure from two dimen-
sional samples developed in the elds of biology and matesiéence [Hagwood 1990;
Underwood 1970]. The most relevant research is describledbe

2.1 2D versus 3D Texture Mapping

Texture mapping is used to add spatial variation to the ajpea of a surface. The vari-
ation may be solely in color, but can also include variationse ectance (e.g. diffuse
versus specular.) In Figure 3 we illustrate the 2D textur@pireg process. Figure(8)
shows an image of a sample pattern of brown squares on a vatkgtound, and a sample
3D object, a small dog. As shown {a), the image is mapped to the surface by identifying
corresponding points in the 2D image and on the 3D object.y\passible correspondence
schemes are possible aflg shows some possible results for mapping this 2D image on
the dog. The results i(b) would be consistent with stretching some thin material ther
surface of the dog.

A 3D solid texture map is a numerically de ned volume in whietery point in space
has a material value de ned either by interpolating betweisorete values de ned at lat-
tice points, by a function of 3D position, or by packing setsmall geometric primitives
into the volume (as illustrated in Figure 4). An extensivecdission of de ning and repre-
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Evaluation of Methods for Approximating Shapes 7

(a) (b)

Fig. 4. In 3D solid texture mapping a 3D structure is de nedl), @s a set of brown cubes encased in a white
binder (binder not shown for clarity). The object is immerse the structure, and texture is assigned in (b) by
intersecting the object with the structure.

senting 3D solid textures can be found in [Ebert et al. 1994].

In Figure 4 we illustrate the 3D solid texturing process. Dhewn and white image
shown in Figure 3 could be interpreted as a slice of a matedaiposed of an array of
brown cubes embedded in a white binding material. In Fig(ag 4ve show the dog model
embedded in the array of brown cubes with the white bindin¢enel hidden to expose
the internal structure. The surface of the dog then is cdlbge nding the intersections of
the dog with the array of cubes to prodytg. Finding a 2D mapping that would produce
the same result would be extremely dif cult without an intexdiate 3D representation.

In addition to properly applying the 2D image to curved slsafpeavoid obvious dis-
tortions, a further problem with using 2D images to textugpreven simple 3D objects
is consistency, as illustrated in Figure 5. The cube at tfiedenapped with 2D images
of an aggregate, and the cube at the right is mapped with 2Démaf wood grain. Due
to inconsistencies at the texture boundaries, the cubesaapp be wall papered with the
images rather than being carved out of solid materials.dfléffit cube were composed of
a 3D aggregate we would expect the images of particles ateddpes to be continued on
adjoining faces. If the right cube were composed of wood, wald/expect the images to
demonstrate a consistent grain orientation.

Both 2D and 3D texture mapping are standard features in mumedeling/rendering
systems. To use these techniques though, the textures msghthesized in some way to
completely cover the object being designed.

2.2 Texture Synthesis

In a computer graphics modeling system, both 2D and 3D sefidites can be created by
purely synthetic means. A user can specify functional patams to procedurally gener-
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Fig. 5. Problems of texture continuity are often apparerjesimetric seams when using 2D textures. These
boxes appear as though they are wallpapered as opposeadpcoeiout of solid materials.

ate texture of arbitrary spatial extent. Alternativel,ttees can be synthesized from 2D
photographs of real materials. For 2D textures, the majoblpm is generating textures
of arbitrary size from example images. Substantial re¢eaver the past ten years has
resulted in numerous 2D texture synthesis algorithms toesddthis problem. Most of
these algorithms fall into the categories either of methbds work by matching image
statistics, e.g. [Heeger and Bergen 1995; De Bonet 1997 aopying pixels or patches
selected by probability sampling the example image, e.ffjofEand Leung 1999; Efros
and Freeman 2001]. Two-dimensional texture synthesigiéthgas have been extended to
apply them to the surfaces of geometric models [Turk 2001taGa al. 2001] and to apply
synthesis to 2D maps representing bidirectional texturesd et al. 2002]. These are only
a few examples of recently developed techniques. A compshereview of 2D texture
synthesis algorithms is outside the scope of this paper. séehowever that no perceptual
evaluation of the large number of methods for synthesizibgextures on three dimen-
sional shapes has been performed. The closest work is tiaboét al. [2004] studying
the effect of texture on the perception of shape. That wokdsdmt consider how well a
synthesized texture on a 3D surface conveys the appearba@doesponding 2D input.

Methods for 2D texture synthesis can readily be applied tos8IDmes if data for 3D
structure are available for the material to be modeled. Weweinlike 2D image samples,
which can be captured with any camera, sample 3D solid textouages must be obtained
by imaging closely spaced slices through a real-world dlgedy reconstructed 3D vol-
umes from measurements of x-ray transmissions. Such 3Dlearage not available for
common materials to be used in computer graphics modelistgs)s. Instead, synthesis
techniques need to be devised which use only a 2D image oDdlsod texture.

One common class of natural and man-made materials cooniditscrete particles dis-
tributed in a binding medium, such as concrete, terrazguhals or granite. An example
image of one such material is shown in Figura)1(A single 2D slice through an aggre-
gate material can hint at the embedded particle shapes amdlistribution, but the exact
structure is unknown unless additional information is e a priori. For example, for
the image used in Figure 3, the corresponding structureldraie been long brown sticks
rather than cubes, brown akes, or some completely unrélsteicture covered by a ve-
neer.
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In comparing the simple array of cubes in Figure 4 to the rggregate imaged in
Figure 1, we can observe that we need to estimate four thingygithesize a particular 3D
structure:

(1) The individual particle shapes

(2) The spatial distribution of particles

(3) The size distribution of particles

(4) The color variations of particles and binder

In prior work [Jagnow et al. 2004], we considered estimafR)g(4) given a 2D slice of
the material and estimates of the particle shapes. For a giadicle shape, the statistics
of the distribution of particles in a 2D slice are determihgdhe 3D particle distribution.
This relationship is mathematically invertible using teitjues from stereology so that the
statistics of the 3D distribution can be computed from thalysis of the 2D slices. We
demonstrated that after particle size distributions atienesed, the particles can be spa-
tially distributed using simulated annealing, and pregi@ texture synthesis algorithms
can be adapted to produce color variations.

In this prior work, particle shapes were estimated by handed&us and error-prone
process. To have a completely automatic method we needablesineans to estimate
the 3D particle shapes from the 2D slices observed in the Isampages. Unlike the size
distribution problem, there is not a mathematically unigakition for computing the 3D
shape from the 2D slices.

2.3 Particle Shape Estimation

The challenge of reconstructing 3D shape from 2D images @mamon problem within
both the graphics and computer vision communities. A nunolbepecialized solutions
have been presented, each targeted to particular dataa@otst Many methods rely on
2D images of the 3D shape captured by a camera, rather thazanniag 2D slices taken
through the shape. In the case where camera locations avenkiMartin and Aggarwal
developed a computational method for approximating thendimg volume of an object
by intersecting extruded silhouettes of the object as seen farious viewpoints [1983].
The resulting shape is known as the visual hull. Matusik etdlapted this approach to
operate on dynamic scenes [2000]. In contrast, for our detatypically don't have the
convenience of a known correspondence between individdalra les.

When only a single pro le is available, Igarashi et al. caast the reconstruction prob-
lem by assuming that the 3D shape exhibits a circular prddm@ its chordal axis [1999].
However, this approach is suitable only for producing srhpaiunded surfaces.

Within the computer vision community, the generalized cand generalized cylinder
have long been recognized as effective primitives for shapeesentation due to their
ability to express a wide variety of shapes with few paransg@inford 1971; Marr and
Nishihara 1978]. In the graphics community, Dischler andagzmfarpour [1999] used
generalized cylinders to model discrete particle shapdsedaded in macrostructured tex-
tures. However, the resulting shapes tend to exhibit umabsymmetry that is often not
present in the input data.

Particle shape estimation is also of great interest in teeestogical community. In
histology—the study of microscopic structures of plants or animalse-analysis of par-
ticle distribution and shape can be used to determine th&epoe of cancerous or pre-
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cancerous cells [Keiding and Jensen 1972]. The spheridatrdation model is one of
the most commonly used methods within the stereologicalneconity for estimating 3D

shapes [Hobolth and Jensen 2002; Hobolth 2003]. Howevsrafiproach is often unsuit-
able for representing particles with sharp corners orrtisfeatures.

Solid texture synthesis for aggregate materials was cereidfrom a stereological per-
spective in our previous work [Jagnow et al. 2004]. In thispwork, particle shapes were
approximated by manually editing nonuniform rational Bisp (NURBS) surfaces. We
seek to accelerate this process by applying automated deetho extrapolating particle
shapes.

2.4 2D Shape Perception

For the majority of the existing literature in shape appneadion, the objective is to build
an accurate geometric reconstruction of an existing 3Dabbje contrast, for a single input
image with discrete, uncorrelated pro les, there is ingignt information for extrapolat-
ing an accurate 3D model—the problem is, by nature, heavibpuostrained. We cannot
expect to reconstruct the identical 3D shapes that wereeptés the original material.
A more appropriate objective is to approximate a particlepghthat exhibits perceptu-
ally similar pro les to those seen in the input. To evaluate methods, we need some
way of quantifying the perceptual similarity of the resudfssarious shape approximation
algorithms.

To compare the similarity of proles, a wide variety of mesiare available. For
an extensive overview of such techniques, we refer the readine summary by Lon-
caric [1998]. Unfortunately, few existing 2D shape comgainis metrics are perceptually
motivated. In an attempt to establish a relationship betvesenputational shape similar-
ity and human shape similarity, Scassellati et al. conditeiuse of algebraic moments,
spline curve distances, cumulative turning angle, siguiofature, and Hausdorff-distance,
all with limited success [1994]. The shape metrics that wesaer here are motivated
by prior research that has identi ed curvature as an imprtharacteristic discerned by
low-level human perceptual mechanisms [Dobbins et al. 1@8And Zucker 1989; Ben-
Shahar et al. 2003]. Speci cally, we compare pro les usingtrits of total curvature
magnitude [Gardner et al. 2004; Loncaric 1998] and area guesire perimeter [Li et al.
2003], which is sometimes referred to@scularity due to the fact that the metric yields a
maximal value for circular shapes.

Simple metrics cannot be expected to reliably capture gttpsphysical aspects of pro-
le similarity, so direct human evaluation also plays anesg@l role in shape compar-
ison. A number of authors have used direct psychophysicduation to assess visual
delity [Meyer et al. 1986; Rushmeier et al. 2000; Pelladitial. 2000; McNamara et al.
2000]. Of particular interest in this area is work by Watsbale who rate the performance
of automated metrics for predicting experimental res@@0D; 2001]. The perceptual ex-
periments described in their research measarming time—the elapsed time from when
an object is shown to a subject until it is named. Howeves, thétric is inappropriate for
gauging the similarity of abstract shapes.

Martens and Myszkowski presented technique for evalustiegerformance of perceptually-

motivated appearance metrics [1998]. In their psychomlaysxperiments, users were
asked to numerically rank the visual similarity of imagerpaiUnlike this previous work

however, the images we create from estimated 3D solid tegtare not expected to be
identical. We cannot use image visible difference predsctach as the model validated

ACM Transactions on Applied Perception, Vol. V, No. N, Mor2BY'Y.



Evaluation of Methods for Approximating Shapes 11
Spherical Constrgctlve Generalized Morph(_ed
Method Harmonics Solid Cylinder Generalized
Geometry Cylinder

. Number of 1 or more 3 2 3 or more
input pro les
Treatment of frequency orthogonal orthogonal orthogonal
input pro les data only silhouettes slices slices

Fig. 6. Summary of input parameters and data assumptiorshégre approximation methods

by Martens and Myszkowski.

Recently, Ledda et al. [2005] evaluated the performancerté-mapping operators rel-
ative to viewing a high dynamic range image. This is simitaotir task, in that this eval-
uation can only be performed by perceptual experiment. éir thiork they have subjects
observe three images at a time and perform paired comparigdmuse a similar approach
for evaluating the quality of results of different partielstimation methods. However, un-
like the work of Ledda et al., we do not present comparisoasrétord a direct preference
between two estimation methods.

3. PARTICLE SHAPE ESTIMATION

Our goal is to use 2D shape pro les, such as those illustratethe right of the lower
series of images in Figure 2, and estimate a 3D shape. Our 8pesbstimation will
be judged successful if 2D slices through a volume populbjeshstances of the shape
produce 2D pro les that are similar to the pro les in the drigl sample. To estimate 3D
shapes from the 2D pro les, we draw on previous methods dised in Section 2.3 and
develop alternative techniques extending previous work.

A single slice through an aggregate material can reveal amper of 2D pro les. Since
each pro le results from a slice through a different pagijdhere is insuf cient informa-
tion to reconstruct any single particle exactly. Withouy anpriori knowledge about the
particles, we need to rely on limited assumptions about gtepe.

The spherical harmonicend generalized cylindemodels described below were in-
troduced in prior publications; theonstructive solid geometgnd morphed generalized
cylinder methods are our own contribution to the problem. A detailechgarison of all
four algorithms is discussed in Section 4.

For all of the methods considered here, we assume that thielpahapes are genus
zero—i.e., the surfaces are topologically equivalent t@lese. Furthermore, it is rea-
sonable to assume that the largest visible pro les resatnfslices near the center of the
largest particles within the volume. Depending on the atgor, one or more characteris-
tic pro les are selected from an image and used as input. Thdgs are chosen by hand
and are expressed using a polygonal representation.

The methods differ in the number of pro les that are used asimnd how the pro les
are incorporated into a 3D shape, as summarized in Tablersth&spherical harmonics
method, only the frequency information of the 2D curve issidared (i.e. the coef ecients
of a Fourier expansion of the curve expressed as a radiugnfaciction), and the original
input pro les are not preserved in slices through the sysitted particle shape. Any num-
ber of pro les can be used as input. For the results shown, ltkree curves are always
used.
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The constructive solid geometry algorithm takes exacttgeatpro les as input. In this
case, we assume that the pro les represent the silhouetteeafbject as seen from three
orthogonal views. A geometric model is constructed in a neatimat preserves the input
pro les in the silhouette. However, the algorithm does netessarily preserve the input
curves in slices through the novel particle.

For the generalized cylinder approach, two input pro les ased. The rst input curve
and half of the second are incorporated directly into thengetoy such that the they can be
seen in slices through the resulting particle. The remgihalf-pro le is ignored.

Finally, for the morphed generalized cylinder method, ¢hoe more input pro les can
be used. The examples shown here use exactly three inputd) ate preserved in the
construction process such that the same three pro les caseée in slices through the
resulting geometric shape.

Each of these four methods will be discussed in greaterldetdie following sections.
Overall, we would expect that methods that use the greatestiat of data from the orig-
inal sample would produce the best results. We would alse&xpat more sophisticated
method used to interpolate or extrapolate the input woubdipece better results. We need
experiments however to determine whether the number ofl@saused has a signi cant
impact, and whether more sophisticated methods improwgdtsesr produce unforseen
noticeable artifacts.

3.1 Spherical Deformation Models

A number of papers in both the graphics and stereologieahlitire use spherical defor-
mation models as a foundation for representing particlpestfEdvardson and Smedby
2002; Weistrand 2001; Hobolth and Jensen 2002; Hobolth RO0&th these methods,
each particle is modeled as a sphere that is deformed inwasdtward from its center.
Particles created with this technique are restricted todxiar-shaped-i.e., all points on
the surface are visible from a single point within the paetic

In two dimensions, star-shaped pro les can be expressedrasdias-vector function
r(q), 0 g < 2p, which indicates the distance from the center of the proddés$ bound-
ary in each radial directiog. This function can then be expressed as a Fourier series
expansion,

¥ ¥
(q) = %+ & bhp=codma)+ & P sinma)

m=1 m=1
with the Fourier coef cients,

bo = r(q)p==dq
0 2p
bl = . r(q)pﬁcos(mq)dq; m 1

Z 1
by = . r(q)i@?sin(mq)dq: m 1

Similarly, in three dimensions, a star-shaped particlebeaexpressed as a spatial radius-
vector functiond(q;f),0 qg<2p,0 f p. Thisfunction indicates the distance from
the center of the particle to its boundary in each polar dimedq;f). Just as(q) can be
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reexpressed as a Fourier series expansi@a,f) can be rewritten as a Fourier-Legendre
series expansion

¥ n
dgif)=1+ & & ava(a:f)
n=1m= n
whereY™(n 1; n m n) are spherical harmonics.

Hobolth and Jensen create 3D particles based on 2D obsmrsdiy relating the co-
ef cients by, by, and b, of the 2D Fourier expansion to the coef cierd§' of the 3D
Fourier-LegendrebeﬁJansion [2002]. The 2D pro le can benmalized via isotropic scal-
ing such thabg = = 2p. We assume that the remaining Fourier coef cients areitisted
according to a Gaussian function with mean 0 and vari&ice

N bs + he
km= é m m
n=1 2N

Likewise, the Fourier-Legendre coef cierd' are assumed to exhibit a Gaussian distri-
bution with mean 0 and variand¢g. Hobolth and Jensen demonstrate that the coef cients

aj' can be ignored, and the remaining variance values are debgtthe expression

i on+l(n Mmoo
km= n§m > mPn O4n n 2
wherePT are the associated Legendre functions of the rst kind.

After solving for the variancek,, Fourier-Legendre coef cients can be chosen accord-
ing to the Gaussian distribution, resulting in particlest texhibit pro les with comparable
frequencies to the input shape. It should be noted that amperuof unique particles can
be generated with the recovered variance values.

This approach for particle modeling is mathematically rme but is poorly suited
for particles that exhibit sharp corners or distinct featur Coef cients of the Fourier-
Legendre expansion are assumed to be mutually indepenteisttends to eliminate the
presence of sharp angles or other features that may chazadtee input. Furthermore,
Hobolth uses only ten expansion terms to approximate eagbesioting that the variance
of the terms becomes excessively noisy after that point3Rdor our results, we use 30
expansion terms, but still fail to capture the sharp featofehe input pro les.

One inherent drawback of any spherical deformation methdlda requirement that all
resulting particles must be star-shaped. This constraicdimes increasingly problematic
for long, slender particles with anisotropic shape charéstics.

3.2 Constructive Solid Geometry

If a static object is viewed from multiple calibrated vievipis, then volume-carving meth-
ods can be used to approximate the geometry [Martin and Agdd983; Matusik et al.
2000]. In contrast, in a 2D sample of an aggregate matenidy, @ane slice through any
individual particle can be seen. In order to constrain tfoemetruction problem, we se-
lect three characteristic pro les, which we assume aresidtites of a single target particle
shape, projected orthographically onto three orthoggrailented viewing planes. We
align the three pro les using a heuristic to determine allikeorrelation and then apply
volume-carving techniques to yield an approximate 3D shape
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Fig. 7. Constructive solid geometry (CSG) method for pltamonstruction. Input pro lesd) are extruded and
arranged orthonormallybf. The CSG intersection of the three extruded sol@}s/ields a plausible 3D particle
shape.

This approach makes extensive use of constructive soligngeyg (CSG) modeling
methods [Mortenson 1999]. The objective is to build a plrtsuch that the orthographic
projection of the 3D shape in the y, andz directions yields scaled versions of the three
input pro les. The basic approach is to extrude each of theelhnput pro les and then
arrange the three extruded volumes orthonormally. The Gf&section of the volumes
yields the particle. This process is shown in Figure 7.

In order to maintain the shape of the input pro les during@®G intersection operation,
the pro les must rst be transformed such that their bourgdboxes have the dimensions
a b,b c anda cforsomea, b, andc. In the rst preparation step, each pro le is
rotated such that the pro le's second-order moment is @dywith thex-axis. The three
pro les are then sorted according to the aspect ratio of theiunding boxes. This sorting
yields pro les ¢y, ¢q, andcy, with decreasing aspect ratday=Cnx, Wherecny andcay are
respectively the width and height of the bounding boxcgf In order to minimize the
change in aspect ratio of the input pro les, we select bongdiox extents, b, andc as
follows:

a = Cox
Coy

CoxC2y=C2x

Finally, we scale the pro les such that these dimension tairgs are met, extrude each
pro le in the direction perpendicular to the image planej anrange the extruded volumes
such that the bounding boxes are aligned as shown in Figbje Tle CSG intersection
of the extruded volumes is guaranteed to exhibit the thrpeatipro les when viewed
orthographically, regardless of the convexity of the inglidpes. However, this does not
necessarily mean that the input pro les are preserved aeslihrough the novel particle.

The particles generated by this process tend to exhibisesestions that are perceptu-
ally similar to the input pro les, with the exception of a fdang, slender shapes or hard
corners that may be introduced by the process. It should tegltlbat at every point on the
particle, the surface normal will be perpendicular to eithex-, y-, or z-axis. This results
in a faceted look that may make this modeling approach uaislieifor applications where
the complete 3D particles are viewed directly.
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Fig. 8. Generalized cylinder method for particle constarct The construction curves shown on the left are used
to create the particle shape on the right.

3.3 Generalized Cylinder Model

Dischler and Ghazanfarpour model macroscopic particlésgus generalized cylinder
method [1999]. The inputs to the algorithm are two represer particle pro les—a
sweep curves and a base curve. The sweep curve is formed by cutting a pro le in
half along a vertical line that passes through its centrdide other half of the pro le is
discarded.

Dischler and Ghazanfarpour choose to represent these twescas radius-vector func-
tions,s(q) andb(qg), 0 g < 2p, which are expressed as interpolating cubic splines with
32 vertices at regularly spaced angular intervals. Whemguiiis representation, pro le
shapes are constrained to being star-shaped, as are ndidégaenerated by the method.
To enable the algorithm to operate on a larger class of geanigbuts, we relax this con-
straint by instead expressis@ndb parametrically as a function ofwhere0 t 1:

Xt _ X(t)
) ys(t) andb(t) Yo(t)

Using the curves andb, a 3D particle can be constructed by sweeping the carve
around the base pro lb to form a generalized cylinder as shown in Figure 8. The akis o
rotation is de ned to be perpendicular by passing through its centroid. Cursés then
oriented perpendicular to cuniesuch that its endpoints lie on the axis of rotation and
is tangent tado(t) att = 0. The particle shape is de ned by the set of all poip(s;ts),

0 ty<landO ts 1,suchthat

? ot () KD(O)k
B(t5it9) = 4 yu(to)x(t9) =kb(O)k 5
ys(ts)

where the normalization terikb(0)k is used to insure that curnggemains tangent tb.

Figure 9 shows some example particle shapes generated lgettezalized cylinder
algorithm. The process is intuitive and can be used to gémeaariety of geometric
shapes; however, the particles created by this method ¢elmalvie a synthetic appearance,
as they exhibit clear symmetry around the axis of rotation.
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Fig. 9. Example shapes created by the generalized cylinéénad. The construction curves shown in the top

£

row result in the particle shapes in the bottom row.

. Al

Input curves Resulting shape

Fig. 10. Morphed generalized cylinder method for partidestruction. The base curve (red) and morph curves
(green and blue) result in the shape shown at the right.

3.4 Morphed Generalized Cylinder Model

The nal particle generation algorithm that we consider is@vel approach introduced
here. The method is motivated by the idea of establishing afsarthogonally oriented

wireframe constraints and then creating a naturally shapeticle that smoothly interpo-
lates between the constraints. The particle is created iarmer similar to that described
for the Generalized Cylinder Method, with the exceptiort tha generatrix curve is mor-
phed from one constraint to the next as it is swept along trettix, or base curve.

To begin, the input pro les are reoriented and sorted ascatgid in Section 3.2. As
described in the previous section, the base prbdeshown in red in Figure 10—is used
as the directrix. The remaining curves, which we will refeas morph curves, collectively
take the place of the sweep cursesed in the generalized cylinder algorithm.nlfotal
pro les are used as input, then morph pro leg throughm, » are oriented perpendicular
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Y

Fig. 11. Construction process for the morphed generaligédder method. The construction curves shown on
the left de ne the portion of the particle shape shown on tgbtr

to the base curve with equal angular spacing around the &xagation. For the examples
shown in this research, three total curves are used, andrthie with the aspect ratio
closest to one is selected as the base curve. However, itdshewnoted that different
particle shapes can be generated either by using a diffetenber of input curves or by
considering alternate permutations of the input pro les.

The next step is to scale each pro le to guarantee intei@estit the black points shown
in Figure 10. Meeting these constraints can be a dif culkt@gro les are modi ed with
uniform linear transformations. The algorithm does notrietsthe pro les to be star-
shaped, so the optimization space can be discontinuousraitthgly poorly behaved.
Instead, we choose to meet the constraints by cutting th@mpro les at each point
where we expect two pro le curves to meet. We then scale eaglon of the prole
independently.

To insure that each morph curve lies tangent to the base ,auvgh pro les are scaled
inward or outward from the axis of rotation. Next, we scale tlurves along the axis of
rotation to insure a common intersection at the poles.

In order to apply the morphed generalized cylinder algaritive need to establish a
parameterization that allows for interpolation betweercegsive morph curves. We have
chosen to parameterize each pro le according its normdlae length [Verth and Bishop
2004].

The cumulative length along a cursé) = [ x(t);y(t)]T,0 t 1 can be expressed as
follows:

zyq_
=" @0+ y3(dt

To reparameterize the curve by its normalized arc lengthcneate a new expression
sr(t) such that

s = sl ((D);
noting thatl (1) is the total length of curve. For the remainder of this section, we will
assume that all curves have been reparameterized accoodimgjr arc length.
To demonstrate the construction process, we considemutitbss of generality, the re-
gion of the surface enclosed by three curves—morph cungél andm (t) and a portion
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of the base curvb(t), as shown in Figure 11. We express the three curves paraaibtri
parameterized according to their arc length, such thatéoheurve region,0 t  1:

xo(t) xa(t) _ %(t)
Yolt) nm 207y

The morphed generalized cylinder algorithm creates a 3ficgEby interpolating the
shape of the morph pro les. We use the morph cumeas the generatrix as it is swept
along the directrix, or base curve,

At an intermediate positioty between morph curvesy(t) andmy(t), we linearly inter-
polate to de ne the morph curve,

mo(t) = , My (t) =

Xm(t;t)
Ym(to;t)

With the help of this expression, we can de ne our desiredasr as the collection of
all pointsp(tp;tm), 0 t, landO ty, 1,suchthat

m(ty; t) = =(1 ty)mo(t)+ tymy(t):

2 3
() Xm(to; tm) =kM(ty; 1)k
Pt tm) = 4 Yo(to) Xm(tn; tm) =km(ty; 1)k O : 1)
Ym(to; tm)

By interpolating the pro les individually over each regienclosed by three curves, we
are able to guarantee that all of the initial constraintswaeé precisely. The normalization
termkm(ty; 1)k in Equation 1 is necessary for enforcing this condition. Xaraple shape
generated by this process is shown on the right side of Fitire

4. ALGORITHM COMPARISON

All of the methods described in the previous section prodizeshapes from 2D pro les

and could be used to approximate a 3D solid texture. We dpedithe CSG and mor-
phed generalized cylinder techniques in the belief thay theuld better approximate a
wide range of shapes. To evaluate the relative performaheaah of the four proposed
algorithms, we consider the use of automated comparisoriandiased on perceptually
motivated criteria, as well as a user study in which parénig attempt to discriminate be-
tween original and synthetic shape data. Our hypothesisheasimple 2D shape metrics
would be adequate to evaluate the relative performanceeo§dhious algorithms. If the

automated shape metrics were successful, they would betease in the evaluation of
further re nements of our shape estimation algorithms.

The particle shapes used as a basis for comparison wer@ethfabm 3D scans of four
different rocks that were deliberately selected to spandewariety of input appearances.
The smoothparticle is a rounded, convex surface. Télengatedshape is more elliptical
with a few sharp edges. THacetedmodel is nearly convex and exhibits a number of
sharp edges. Finally, thmomplexmodel is highly non-convex and is the only one of the
four meshes that is not star-shaped.

Each particle was approximated with each of the four recongon methods, resulting
in a total of 20 particle shapes, including the originalseTiput to the algorithms came
from three orthogonally oriented pro les taken from thegimial particles. The orthonor-
mal basis was selected to correspond approximately with pacicle's rst and second
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Fig. 12. In the left column are the four scanned particle shagsed as the inputs to the shape approximation
algorithms. To the right are the decoy particle shapesedda each of the four particle approximation methods.

moments of inertia. Each of the 20 polygon meshes was scaléatmly to insure that all
particles have the same volume. Figure 12 shows the origardicle shapes and the de-
coy particles generated by each algorithm. Randomly ssdex#ntral slices through each
particle are shown in Figure 13.

4.1 Automated Performance Evaluation

For the purposes of this research, it is important that timthgfic particle shapes have a
plausible appearance and that the particles yield proHasare perceptually similar to the
example data. Thus, we choose to evaluate the resultinglpashapes based on metrics
that are motivated by human perception. Curvature in tweedisions is theorized to be
an important characteristic identi ed by low-level humarpeptual mechanisms [Dobbins
etal. 1987; Or and Zucker 1989; Ben-Shahar et al. 2003]. Whertetrics that we consider
here are the total curvature magnitude of a pro le and thesuesof area per perimeter
squared, also known as circularity [Gardner et al. 2004;claoic 1998; Li et al. 2003].
Each is an indicator of the visual complexity of a curve.

The total curvature magnitude is computed by summing thelatesvalue of the change
in angle at each point along the curve. If the pro le is conven this value sums tqo2
Higher values indicate a higher degree of shape concavity circularity metric can range
from a value of zero for degenerate shapes with zero area taxamam of =4p, which
can only be achieved by a perfect circle.

To produce the values shown in Figure 14, we created a utiléysliced through each
particle 10,000 times at uniformly distributed random pt&ions. We applied the auto-
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Fig. 13. This table shows randomly selected central proflseach original and synthesized particle shape.
Pro les that we judged to be poorly matched to the originahdae highlighted in color. Red pro les are overly
curved or blobby, yellow pro les exhibit excessively shaqrners, and green pro les show symmetry that is not
present in the original data.

mated metrics to the pro les and averaged the resultingeslu

For the two graphs in the top row, the particles were alwagsdlthrough their center of
mass. This yields pro les with relatively uniform statissi but fails to capture anomalous
appearance characteristics that may occur at slices thabare distant from the particle
center.

In the second row, the values were obtained by slicing pestiat both a random ori-
entation and a random offset from the particle's center o§snal he values obtained in
this manner statistically represent the pro les that aghlé in a slice through a volume
of particles embedded in an opaque medium, much like theaenshgwn in Figure H).
As expected, these pro les exhibit a greater diversity gbearances, resulting in higher
standard deviation values.

To analyze the signi cance of these results, we apply amalgEvariance (ANOVA).
For all of the datasets considered, we set a threshold of cégree atp  0:01. Our rst
concern is whether the measures we used were sensitive thffrent particle shapes.
Secondly, we wish to see if they reveal differences in théigiarestimation methods. For
each of the four tables in Figure 14, a two-way analysis ofavere (ANOVA) reveals a
signi cant dependence on shape and choice of algorithm 0:001), and also indicates
signi cant interaction between the two factogs<€ 0:001).

Figure 15 summarizes the shape statistics, showing thageeleviation from the origi-
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Fig. 14. Original and synthetic particle shapes are congpaig two measures of 2D visual complexity: total
curvature and area/perimetefThese charts show the mean and standard deviation valteiaebfrom 10,000
random slices through each particle shape. The top row shalwes obtained from slices passing through the
center of the particles. In the second row, slices are rahdsefected.

Metric Pro le Slice Algorithm
Spherical Generalized Morph(_ed
; CSG : Generalized
Harmonics Cylinder :
Cylinder
Area/Perimeter? Center of Mass 5.0% 2.5% 1.6% 1.4%
Random 4.0% 5.4% 1.9% 1.6%
Total Curvature Center of Mass 27.8% 20.6% 8.2% 9.5%
Random 19.5% 18.6% 7.8% 9.3%

Fig. 15. Average deviation from original data values fortealgorithm, as measured for each of the two metrics
and pro le slicing techniques.

nal data for each of the shape approximation algorithmse@as these values, we see that
the generalized cylinder and morphed generalized cylintethods perform better than
the spherical harmonics or CSG methods for matching thengikiepe statistics. However,
there is no consensus on a total ordering of the four algusth

These methods attempt to capture perceptually meaningtiedia with a simple metric,
but there are some drawbacks to the approach. The totaltaueuvaetric is sensitive to
shape tessellation. Highly tessellated pro les may inelbdyh-frequency information that
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increases the total curvature magnitude without greathirdmuting to the overall appear-
ance of the shape. To a lesser extent, the perimeter cadgulatalso susceptible to this
problem. Furthermore, as shown in Figure 13, some of theacheristics that distinguish
the decoy pro les from the original pro les include the pegge or absence of sharp cor-
ners, as well as the presence of symmetry. These charéicirighile easily seen by a
human observer, are not captured by the statistics comsideare. Our original hypoth-
esis that the simple automated shape metrics would be aeipuavaluate the proposed
algorithms was contradicted by our own casual observafiorobtain more de nitive re-
sults, we constructed an experiment to obtain more fornpaltifrom human observers, as
described in the following section.

4.2 User Study

To obtain a direct evaluation of the four proposed algorghor shape approximation,
users were shown a series of images in a computer-based tekidh they were asked
to evaluate shape similarity. Since any two particles agarty going to have different
shapes, we constructed a test where the users would judgeritirity of clusters of 2D
pro les. We authored a user study in which participantsragieto distinguish between
original and synthetic 2D slices obtained from 3D volumepanticles.

4.2.1 Data. All of the data used in the study was synthetically produeedrier to
keep the images free of noise, which would otherwise lendtndtive appearance to the
physically captured images. Further, we chose to use fegt¢ uniform size rendered as
solid black and white images to eliminate the effects ofatains in particle size distribu-
tion and color estimation.

The study used the same four particle shapes describedpstyiand shown in Fig-
ure 12. For each shape, a synthetic volume of 1000 cubic waikspopulated with parti-
cles of constant size. The volumes for #mooth elongategdandfaceteddatasets contain
4000 particles, each of which has a size of 0.125 cubic ufitais, 50% of the volume
is occupied. The datasets for tbemplexparticle shapes contain 3500 particles, yielding
volumes that are 44% occupied. (The geometric nature ofdhgptex particles does not
allow them to be packaged as tightly, so fewer of the compbatiges of the constant
size could be packed into the test volume.) For each shagesywthetic volumes were
generated for each particle type — one for the original giartand one each for each of the
shape estimation methods. Images were formed for use iriutlg By taking random 2D
slices through these synthetic volumes. Figure 17 showedtiation in appearance of 2D
slices taken through the volumes containing the origindiges.

4.2.2 Procedure.To evaluate the effectiveness of the methods, study paatits were
given a computer-based test to compare image similarityil&i to the approach used by
Gurnsey and Fleet [Gurnsey 2001], users were shown a séisese@ns, each containing
three images in a row, as depicted in Figure 16. In most ies®rihe centerimage and one
of the adjacent images were generated by taking a slice ghroue of the four original
volumes. The third image was generated by taking a slicaigfira decoy volume, gener-
ated using one of the four proposed methods. Users were &sktidk on the image that
appeared to be the least like the center image and were ilypdisked to evaluate the im-
ages based on the shape of the visible pro les rather thandilze, density, or distribution.
The test interface measured the accuracy and time requine@dke each selection. Note
that unlike the Ledda experiment described earlier, themies is not selecting a prefer-
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Fig. 16. Example screen from user study. Users are askedeft e image that is least similar to the image in
the center. Here, a decoy image is shown on the far right.

Fig. 17. Examples of the variation in appearance evidertiéroriginal distributions. All three of the images in
each column are taken from the same 3D distribution of pastic

ence between two estimation methods, but is always makidgp&e between an image

generated by an estimation method and an image generatedtfeosame test volume as
the center reference image.

To establish a baseline for the average selection time, XG#edest screens contained
three images that were all taken from the same volume. Thisésl to measure user
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Fig. 18. User study results showing the relative perforreasfdour different algorithms for extrapolating particle
shape based on limited shape information. The graph on thehews the frequency with which users were
“fooled” by a decoy model. Average selection times are showthe right. Mean and standard deviation values
are shown for both graphs.

response to aitleal particle—i.e., a theoretical decoy particle that has antidal appear-
ance to the original shape.

The images used for the study depict black particles on aavifsitkground and are an-
tialiased with a size of 250x250 pixels. Images were sepdrhy 40 pixels of a neutral
grey color. Users were seated comfortably in a dimly lit roaha distance of approx-
imately 55cm from the computer monitor. Each image was shaiva size of 7.8cm,
forming a visual angle 8.1 degrees.

In accordance with the guidelines established by the MIT @ittee On the Use of
Humans as Experimental Subjects (COUHES), each participahe study was given a
detailed written description of the study procedures, dbagea summary of their rights as
a research subject. All study participants are memberseo¢dmputer graphics and com-
puter vision communities at MIT; none had detailed knowked§the speci ¢ algorithms
being tested. Participation was completely voluntary, asers were not compensated in
any form.

Prior to the start of the test, users were given a brief tngirsession, which included
an example test with ten evaluations to familiarize thenhlie task and interface. The
complete test contained 80 questions—four for each pefélgjorithm combination, plus
four questions for each particle shape in which no decoy Waws. The questions were
presented in a different random order for each user, andemagre randomly selected
from a database for each screen. Between evaluations, wsessshown a neutral grey
screen for one second.

4.2.3 Results.Sixteen users participated in the study, yielding 1280viildial data
points. The results of the study are summarized in Figurdrighe rst chart, we see the
success rate at which the decoy particles were selectecthystrs. In the case of an ideal
decoy particle, we would expect a success rate of 50%; iegexpect that a user would
be equally likely to select the image from the original vokior the decoy volume. This
baseline value is indicated by the light blue bar at the fir le

These values indicate an ordering of algorithm effectigsneanking the morphed gen-
eralized cylinder method clearly higher than the consivacolid geometry and spherical
harmonic methods. One-way analysis of variance (ANOVA) destrates that decoy suc-
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Fig. 19. Detailed graph of user study results showing vianabetween input datasets. The graph on the left
shows the frequency with which users were “fooled” by a dewmdel. Average selection times are shown on
the right. Mean and standard deviation values are showndibr graphs.

cess has a signi cant dependence on the algorithm ysed@;001).

These same results are re ected in the second table in Figyynehich shows the aver-
age time the users spent making their selections. The had@etie is shown in light blue
on the far left; this represents the case where all threeaesagre derived from the same
volume and can be considered to be indicative of selectioa for an ideal decoy parti-
cle. Again, ANOVA indicates a signi cant dependence on tlgoathm used to create the
decoy particlesgg< 0:001).

Selection time should not, in and of itself, be consideredeasure of algorithm per-
formance. It does, however, provide some indication of havelmuser effort is involved
in assessing shape similarity. In this study, we have chasese the metric to validate
the results obtained in the ranking of decoy success. Th&orlbetween the measures of
decoy success and selection time can be clearly seen frompacison of the two charts
in Figure 18.

As shown in Figure 19, the behavior of each algorithm can Insidered more precisely
by breaking apart the data and looking at how the performaheach method varies with
different input parameters. Two-way analysis of varianppliad to the decoy success
rate indicates that performance has a signi cant deperelendhe algorithm usedy(<
0:001) as well as the shape that is being approximated 0:003). Furthermore, ANOVA
indicates a signi cant interaction between the algorithmd ahape < 0:001).

5. DISCUSSION

Considering all datasets combined, the morphed genedatidander algorithm generates
signi cantly more successful decoys than the sphericafrtoanics or CSG method. While
the overall success rate is higher for the morphed genedatiglinder than the generalized
cylinder, the difference is not statistically signi camtour data. The desired 50 % success
rate that would be obtained by chance is outside the rangéusfqr minus a standard
deviation for even the morphed generalized cylinder meth@derall this indicates that
there is room for improvement in estimating particle shape.

The detailed analysis by particle class indicates that tB& @nd spherical harmonics
algorithms are completely unacceptable for some partiakses. The spherical harmonics
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algorithm is acceptable for replicating the appearancerafath surfaces that lack sharp
features, but always failed for elongated shapes and faqetdicles. In contrast, CSG
provides a reasonable approximation for elongated pestict surfaces with sharp edges,
but always failed for smooth shapes.

The detailed results by particle class do not show a signitchfference in the gener-
alized and morphed generalized cylinder methods. In chgdsetween them though it
should be noted that the average minus standard deviatitheisuccess rate is always
highest for the morphed generalized cylinder method.

Once again, selection time should not be considered as et dirgasure of algorithm
performance but serves to validate the ranking of decoyessccFor the most part, the
relative values in the left and right tables of Figure 19 aedl\worrelated. Two-way anal-
ysis of variance on the selection times indicates a sigmtaependence on the algorithm
(p < 0:001). However, selection time does not exhibit a signi cdependence on the
particle shapef = 0:36), nor does ANOVA indicate a signi cant interaction betmethe
algorithm and shapep(= 0:16).

When looking at the standard deviation values in Figure tL8hould be remembered
that each user observed only four instances of each conirinatt shape and algorithm.
For a rating of decoy success, this results in only two bitafofmation, yielding values of
0%, 25%, 50%, or 100%. High levels of variability in theseued should be expected, but
this does not diminish the statistical signi cance of thalings. For both graphs, ANOVA
demonstrates a signi cant dependence on the algorithmigatidg that spending effort
on improving the shape estimate algorithm is worthwhile ety the most optimistic
estimate, none of the algorithms can produce particle shps are indistinguishable
from the originals, suggesting that time would be betteegted in improving the two
more successful approaches rather than running more exgrets to re ne the ordering of
the methods.

The relatively poorer performance of the spherical harm®and CSG methods pro-
duced by the user study should come as no surprise based opthelata for each ap-
proach and how that information is used. The spherical haitsanethod considers only
particle curvature while ignoring the rst-order shapetistécs of the input pro les. The
CSG modeling approach incorporates three pro les dirantly a resulting shape, but does
not make an effort to interpolate smoothly between the shape

The lack of greater difference in the performance betweencther two methods is
somewhat surprising. The generalized cylinder performsamshape interpolation, but
only considers two pro les as input. The morphed generdli@ginder performs smooth
shape interpolation and incorporates three input pro lesaly into the resulting 3D parti-
cle shape. In general, we would expect the results to faesethlgorithms that incorporate
more information from the original data set using an ingelfit interpolation algorithm. In
this case, we did not observe as strong an effect as we hadterpe

Comparing the user study and the automated metrics, thenatgéd metrics do not
successfully capture the perceptual similarity of shapéise¢ degree needed to evaluate the
four estimation methods. Each of the metrics ranks the géimed cylinder and morphed
generalized cylinder methods above the spherical harrm@md CSG methods, but there
is no consensus on the total ordering. The signi cant slvoniag of the automated metrics
is that they do not reveal the failure of some of the methods/&y adequately simulate
some particles shapes—i.e. the zero success rate of the @B®adrto simulate smooth
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shapes or the spherical harmonic methods to simulate elethgafaceted shapes.

The automated metrics presented here were clearly unalskeptore some of the ap-
pearance characteristics that were discerned by the usgdy. sffo improve automated
prediction of perceptual shape similarity, additional nestshould be considered that ac-
count for symmetry, anisotropy and the presence of shamecsr A number of other 2D
shape metrics have been introduced within the computesrvisbmmunity, but the vast
majority are designed to identify object features—oftemfsowith high curvature—for
object recognition. Unfortunately, these types of esthlglil metrics are of limited use
when attempting to quantify the subjective similarity ofahct shapes.

We believe it would be particularly useful to derive a methat computes the distri-
bution of curvature along the edges of a 2D polygon. Such aienebuld indicate the
presence of sharp corners, as well as smooth lines alongtiredary of a 2D shape. In
practice, we have had dif culty in deriving such a metric, the methods that we have
considered are sensitive to polygon tessellation and m#ntor near-coincident vertices.

The metrics described here may be considered as coarsetpredor shape similarity,
but these automated techniques should not be treated askemiireplacements for direct
user evaluation. Further improvements in estimating stapsolid texture synthesis will
need to continue to rely on psychophysical experimentsratian on existing simple
shape metrics.

6. CONCLUSIONS AND FUTURE WORK

We have presented and evaluated four methods for predigéirigtle shape for use in 3D
solid texture synthesis. Of the four algorithms considdrerk for replicating aggregate
materials, this research points to the generalized andmedrgeneralized cylinder meth-
ods as the most effective for approximating 3D particle sisdpom 2D pro les. The other
methods—constructive solid geometry, and spherical haitse—are each effective within
certain domains, but do not generalize well to a wide vaiiéinput shapes.

The automated techniques considered here are marginaltgssful for predicting al-
gorithm performance from a psychophysical standpoint.ndds that better capture sharp
features on numerically de ned shapes are needed. Evenghodetributions in this area
could be of great assistance to perceptually-driven rekeas it is infeasible to always
seek direct user evaluation in the form of a thorough, hias-fiser study.

Although this research was primarily focused on the prolslefrshape perception and
texture synthesis, the algorithms described here migbtladsapplied to other problems
within computer vision and computer graphics. Since pre ¢éfer a compact representa-
tion of a shape, some of these algorithms may be consideragetometry compression.
Future research may also consider the use of the morphedaljeed cylinder algorithm
as a general modeling approach for creating 3D geometry $iorple, limited user input.

The work presented here is an example of a class of compuaehigs problems that can
only be approached using perceptual principles and expetisn Three dimensional solid
texture modeling is one aspect of the broader area of miteniadeling. Real materials
exhibit highly detailed spatial variations due to weathgiand aging effects that we cannot
expect to perfectly replicate in simulation. Physicallga@te spatial variations of texture
as a function of object geometry are expensive to simulateapture. Rather than the
informal evaluations used for material modeling today,cpptual methods will play an
increasingly important role in the future in developing@ént texture synthesis methods.
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Additional techniques are needed for evaluating simifaoit a higher level rather than
evaluating whether two images are simply identical.
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